
PCAIM User’s Manual

Andrew Kositsky
California Institute of Technology

12 May, 2010

Version 1.0 COMPILATION DATE: May 12, 2010, TIME: 13:52

i

PCAIM User’s Manual

January 03, 2010

Copyright:
c©2010 California Institute of Technology

Published online at http://www.tectonics.caltech.edu/resources/pcaim/download.
html on January 04, 2010.

Revised by Hugo Perfettini, February 10, 2010.

http://www.tectonics.caltech.edu/resources/pcaim/download.html
http://www.tectonics.caltech.edu/resources/pcaim/download.html

ii

The software accompanying this manual is protected by a license. Please see http:

//www.tectonics.caltech.edu/resources/pcaim/ for the current edition of the license
or e-mail pcaim [at] gps.caltech.edu if you have any questions. It is the reader’s
responsibility to obtain and agree to the current version of the license.

http://www.tectonics.caltech.edu/resources/pcaim/
http://www.tectonics.caltech.edu/resources/pcaim/

iii

This manual is dedicated to
my mother, father and brother

for helping me become who I am today

Contents

Software License ii

Contents iv

List of Figures vii

List of Tables viii

Acknowledgements ix

1 Introduction 1
1.1 Purpose . 1
1.2 Installing the Software . 2

2 Theory 5
2.1 Overview . 5
2.2 Basic Assumptions . 7
2.3 Centering . 10
2.4 Decomposition . 13
2.5 Temporally Dense vs. Sparse Data . 18
2.6 Fault Models . 19
2.7 Inversion . 23

3 Practice 27
3.1 MATLAB Review . 27

iv

CONTENTS v

3.2 Naming Conventions . 29

4 Tutorial – Inversion of Nias 2005 Postseismic 31
4.1 Geological Background . 31
4.2 A First Run . 31
4.3 Parameters to Vary . 33

5 Tutorial – Loading New cGPS2/cGPS3 Datasets 39
5.1 Setup . 39
5.2 The Art of Inversion . 42

6 Checklist – Adding a new type of data 45

7 Comprehensive Guide to Options 47
7.1 load scenario information . 47
7.2 data file . 48
7.3 scen parameters file . 48
7.4 center parameters file . 50
7.5 decomposition parameters file . 53
7.6 model parameters file . 56
7.7 inversion parameters file . 58
7.8 plotting commands file . 59

8 File Conventions 61
8.1 Data Input . 61
8.2 Fault Models . 67

9 .m-Files 73
9.1 Data/Conventions Loading . 74
9.2 Decompositions . 87
9.3 Fault Related . 108
9.4 General . 136
9.5 Inversions . 160
9.6 Plotting and Statistics . 166
9.7 Testing Scripts . 189

10 Variables 191

Bibliography 199

vi CONTENTS

A Downloading Coast Files 201

B Derivatives of χ2 203

C Analytical Minimum 209

D Laplacian 211

List of Figures

2.1 General Schematic for PCAIM . 7
2.2 Diagram of the Full PCAIM Program . 8
2.3 The Importance of Proper Centering . 12
2.4 Fault Element Description . 20
2.5 Sample Slip Plot . 22

4.1 The Sunda Trench . 32

D.1 General Irregular Triangular Planar Grid . 212

vii

List of Tables

3.1 Abbreviations in the Code . 29

8.1 Acceptable Data Types . 62
8.2 Acceptable Units . 62

viii

Acknowledgements

The materials herein are based on methodology designed by Andrew Kositsky and Jean-
Philippe Avouac, and on research applications by Andrew Kositsky, Hugo Perfettini,
Nina Lin, and Marion Thomas. The PCAIM code which this manual documents was
designed and written by Andrew Kositsky and Hugo Perfettini, and includes scripts orig-
inally written by Y. Okada (disloc.f, based on [Oka85] and [Oka92]) with contributions
from Nina Lin (InSAR time-series inversion), Yaru Hsu (original single-epoch GPS inver-
sion), L. Shure (fnnls.m), Martin King (the original of conjugate_gradient.m), Nathan
Srebro (algorithm of decomp_srebro_EM and decomp_srebro_EM_projection), Peter
Cervelli (local2llh), and an unknown author (possibly Peter Cervelli) (polyconic.m
and llh2localxy.m).

This manual would not have been possible without the support of my colleagues and
friends. The manual was improved thanks to proof reading by my friends Kim Hancock,
Morgan Appleberry, Linda Granger, and Cassandra Jerde. The code has benefitted from
helpful testing by Nina Lin, Marion Thomas, Yaru Hsu, Thomas Ader.

I thank Tapio Schneider for his advise applied mathematics methods, and in partic-
ular for his idea of multi-component joint inversion via block diagonal Green’s functions
allowing the easy incorporation of sparse datasets.

I thank Yangyang Liu for helping me compile the .m-files in Section 9 and for answer-
ing so many of my LATEX questions.

I thank Eric Stansifer for the (now) obvious definitions of α, β, and γ in Appendix C.
I thank Hugo Perfettini for his partnership in developing and testing this public

version of the code.
Most of all, I thank Jean-Philippe for his years of guidance, care, and mentorship.
We acknowledge support by the Gordon and Betty Moore Foundation (through the

Tectonics Observatory), the National Science Foundation (through grant EAR-0838495),

ix

x List of Tables

the Institut de Recherche pour le Developpement, and the Caltech SURF program.

Chapter 1

Introduction

This is a public-beta version of the Principal Component Analysis-based Inversion Method
(PCAIM) software package. If you have any suggestions or comments, please e-mail
pcaim@gps.caltech.edu.

1.1 Purpose

The primary purpose of this code is to allow the inversion of time series of surface
displacement, strain or tilt for the time evolution of a source of deformation at depth
(namely slip on a pre-determined faults system, opening of dykes, or magmatic inflation).
We assume that the user is familiar with the PCAIM of [KA10] and with the theory
relating subsurface deformation and surface displacements assuming an elastic medium
(e.g., [Oka85, Oka92]; [Mog58]; [Coh99]). The code has been written in MATLAB so as
to make portability an almost non-existent issue. The code has been tested on Mac OS
10.4-6, Windows and Linux operating systems, and it has also been tested on MATLAB
versions 2008a, 2008b, 2009a. While we did not hope to program in every conceivable
type of useful input data, we have provided a standardized method through which a user
can modify the code to include customized data types and Green’s functions (relating
surface displacements, or strain, with subsurface sources of deformation). In this public
edition 1.0 of PCAIM, we provide functionality for arbitrary sets of:

• continuous 3-component GPS data

• continuous 2-component GPS data

• campaign 3-component GPS data (with enough data samples)

1

2 CHAPTER 1. INTRODUCTION

• campaign 2-component GPS data (with enough data samples)

with the optional addition of

• a single InSAR image

The next version of the code will allow in addition inversion of SBAS-processed InSAR,
electronic distance meter (EDM), and creep meter time-series.

Because we have data loading functions, fault models, inversion algorithms, and plot-
ting functions all built-in to the PCAIM software, the user has all the ingredients for
inversion of single InSAR images, static coseismic inversions, and interseismic coupling
maps providing a consistent framework to analyze a variety of data.

In addition to these direct functions of the code, we have designed and included a
number of tools for creating fault geometries (Section 2.6), calculating Green functions
(Section 2.6.3), and computing a discrete approximation of the Laplacian on an irregular
sampling grid (Section 2.6.2). The user can employ these separately from the inversion
routine to design a source geometry for any purpose (including producing a source geom-
etry for a later inversion routine), or the user can define a suite of source geometries and
automatically find the optimal geometry form this suite by iterating over the inversion
routine.

Another advantage of the PCAIM program is the customizability of the script. By
being coded as simply as possible with an online database of user-provided additions, the
code is meant to be easy to understand and extend.

1.2 Installing the Software

To install the PCAIM software, the user needs to:

1. Register for the software at http://www.tectonics.caltech.edu/resources/

pcaim/.

2. Download the zip archive from http://www.tectonics.caltech.edu/resources/

pcaim/.

3. Expand the archive.

4. Put the resulting folder (henceforth to be called the “main PCAIM folder”) in the
location of the user’s choice. There is a folder called Code within the main PCAIM
folder (henceforth to be called the “code folder”).

http://www.tectonics.caltech.edu/resources/pcaim/
http://www.tectonics.caltech.edu/resources/pcaim/
http://www.tectonics.caltech.edu/resources/pcaim/
http://www.tectonics.caltech.edu/resources/pcaim/

1.2. INSTALLING THE SOFTWARE 3

5. Find the file PCAIM_driver in the main PCAIM folder and change the string as-
signed to code_dir to the full path of the code folder on the user’s computer.

6. The user may need to compile the Fortran code (see Section 1.2.1) to compute
Green’s functions with the software package.

7. The software should now be useable.

There are two ways to make the code accessible to MATLAB.

1. Each time the user opens MATLAB and desires to use the code, manually open
PCAIM_driver.m and click on the “run” button (Green Arrow at the top of the
editor window. MATLAB will ask if the user wants to change the current directory,
or add the directory of the .m-file to the PATH variable, click “change directory.”
After about a second the code will add all of the proper sub directories for the code
and make all the PCAIM scripts accessible to the user.

2. Add the main PCAIM folder and all of its sub directories to the default MATLAB
path.

1.2.1 Green’s functions

The Green’s functions to convert fault slip on a rectangular fault or point source at
depth to surface displacement were written in FORTRAN by Yoshimitsu Okada [Oka92],
and a convenient wrapper has been written by by Hugo Perfettini. While we include
several compiled versions of the FORTRAN code, we have also included the source code.
Instructions for compilation written by Hugo Perfettini are below:

Requirements:

• ar: basic unix command

• gfortran: free Fortran compiler (GNU product). gfortran can be download for win-
dows, Mac OS X (tiger , leopard, snow leopard), and linux at:
http://gcc.gnu.org/wiki/GFortranBinaries, or
http://hpc.sourceforge.net/.

Instructions:

1. Install the Fortran compiler

file:PCAIM_driver.m
http://gcc.gnu.org/wiki/GFortranBinaries
http://hpc.sourceforge.net/

4 CHAPTER 1. INTRODUCTION

2. From the main PCAIM directory, go the GREENFUNC directory:

cd Code/Fault\ Related/GREENFUNC

3. Make sure the compiler script ‘compile’ is executable on linux or unix, typing:
chmod +x ./compile

4. Build the subroutines listed in ‘Sublist’ typing, and the programs listed in ‘Proglist’
typing:
./compile

5. Check the results:

a) Go in the ‘bin’ folder: cd bin

b) Execute the point source program, typing:
./displacement_green_fcn_point_source

c) Execute the rectangle program, typing:
./displacement_green_fcn_rectangle

d) Check that the results are ok by comparing with the included TEST files.

• For rectangular dislocation, type:
diff GREEN_FCN.rect GREEN_FCN.rect.TEST

• For point source dislocation, type:
diff GREEN_FCN.trg GREEN_FCN.trg.TEST

If everything is ok, the user should get the prompt with no messages. This
means that the files GREEN_FCN.rect and GREEN_FCN.rect.TEST are identical
(which they should be). In case they are not, check the output file GREEN_FCN.
rect and see if the differences with GREEN_FCN.rect.TEST are not marginal
(i.e., due to rounding on the last digit).

From here we give an overview of the theory behind PCAIM. While we strongly
suggest the user review the theory behind PCAIM, if the user wishes to preview the
results of the code via a tutorial, the user may skip to Chapter 4.

Chapter 2

Theory

In this chapter we review the assumptions and methods for translating a set of surface
displacement or strain data (e.g. InSAR images, GPS time-series, strain meter time-
series, etc.) into a source model (e.g. point, triangular or rectangular fault patches, ‘Mogi’
inflation sources, etc.) at depth. For convenience and clarity we use the terminology
associated to the case where the source of deformation is slip on a fault.

2.1 Overview

We give here an overview of the methodology implemented in the PCAIM code from
[KA10]. The reader is referred to [KA10] for more details.

Let us consider a set of geodetic positions measured at a number of sites and at a num-
ber of dates, called epochs. The measurements made at different sites might correspond
to different epochs. We call a set of data measured at the same location and orientation
(e.g. the North component of a GPS measurement station) a time-series. We place time-
series in a m × n matrix, X0, where each row corresponds to a single time-series, and
each column corresponds to all data measured at a given epoch. For entries where we
have no measurement we fill in a default value and mark these entries as missing data.

We suppose that displacements are due to an unknown, time-dependent slip distri-
bution on a discretized fault with known geometry α. The slip vector on each subfault is
decomposed into a strike and a dip component. We assume that the medium surrounding
the fault is elastic, and we represent fault slip by a matrix L where each row refers to both
components of slip (strike-slip and dip-slip) on a given subpatch and each column refers
to an epoch. Let Gα denotes the Green’s functions relating surface displacements with

5

6 CHAPTER 2. THEORY

fault slip at depth (decomposed into a strike-slip component and a dip-slip component),
given a fault geometry α, and C is a matrix with each row equal to a constant, repre-
senting the position of the corresponding site for a zero slip. Then surface displacements
(with the exception of missing data) then obey:

X0 = GαL+ C. (2.1)

The Greens function’s Gα can be computed from the semi-analytical solutions of [Oka92]
for a dislocation embedded in an elastic homogeneous half-space using the scrips pro-
vided with this code. The Green’s function could alternatively be computed based on the
triangular fault patch source model of [Mea07] or a multi-layer elastic half-space models
(e.g., [XY89]).

Determination of the time-dependent slip model corresponding to the measurements
requires inversion of that linear system. The Principal Component Analysis-based Inver-
sion Method relies on the following principles:

1. The datasets can be decomposed as the sum of components, each component being
associated with a pattern of surface displacement and a time function. (Linearity)

2. Only a small number of components is generally necessary to explain most of the
data. (Low-Rank)

3. The pattern of surface displacements associated with each component can be in-
verted for some principal slip distribution. (Invertibility)

4. The fault slip distribution corresponding to the original dataset can be derived by
linear combination of the principal slip distributions. (Linearity)

In practice PCAIM flows as follows:

1. Center X0 along its rows and call the centered matrix X.

2. Decompose and approximate X as the matrix product of at least two matrices (e.g.
X ≈ UV t), with the left-most matrix of low rank.

3. Invert the left matrix (columns of U) for slip distributions L as if they were ordinary
displacement vectors at the surface via some Green’s function matrix G, i.e. solve
the matrix equation G · L = U .

4. Sum the slip distributions multiplied by their associated time functions (V t = all
matrices in the matrix product except the left-most) (LV t). Then as G · L ≈ U ,
G · LV t ≈ UV t ≈ X.

2.2. BASIC ASSUMPTIONS 7

Surface Displacement
Linear Decomposition−−−−−−−−−−−−−−→ ∑r

i=1 Linear Component(i)

−−−−−−−−−−−−−−−→
In

version

−−
−−
−−
−−
−−
−−
−−
−→

E
la

st
ic

D
is

lo
ca

ti
on

F
or

w
ar

d
M

o
d
el

in
g

−−−−−−−−−−−−−−−→
In

version

−−
−−
−−
−−
−−
−−
−−
−→

E
la

st
ic

D
is

lo
ca

ti
on

F
or

w
ar

d
M

o
d
el

in
g

Slip History
Linear Recombination←−−−−−−−−−−−−−− ∑r

i=1 Slip Distribution(i)

Figure 2.1: General schematic for PCAIM.

It is useful to think of PCAIM based on the diagram in Figure 2.1. The left-hand
track represents directly translating displacement data into a slip model by inverting the
difference in surface displacement between consecutive epochs for incremental fault slip.
PCAIM instead divides the displacement data into the sum of linear components. Each
of the components can be inverted individually into a corresponding slip distribution. It
should be noticed that each individual component corresponds to a linear combination
of the contributions from various sources and not to a particular, identifiable physical
source. In general, each component has no obvious physical meaning when considered
alone, although the various components might be recombined to extract the contribution
of particular sources [KY06, KY09].

The major functions of the actual program as-written are diagramed in Figure 2.2.

2.2 Basic Assumptions

In order to apply PCAIM to a dataset, one needs to accept certain general assumptions:

Invertibility: The observations between any two epochs can be plausibly modeled as
resuting from a distribution of slip on a pre-defined fault F .

8 CHAPTER 2. THEORY

Th
is

 s
ec

tio
n

im
po

rts
 k

no
w

n
da

ta
 ty

pe
s

in
to

 th
e

pr
og

ra
m

 fo
r

fu
rth

er
 p

ro
ce

ss
in

g
an

d
in

ve
rs

io
n.

Th
is

 s
ec

tio
n

ca
lc

ul
at

es
 th

e
w

ei
gh

t p
la

ce
d

on
 e

ac
h

da
ta

 p
oi

nt
 in

th

e
da

ta
se

t.
Un

le
ss

 a
dd

iti
on

al
 s

tre
ss

 is
 a

dd
ed

, t
he

 w
ei

gh
t g

iv
en

 is

1/
si

gm
a^

2

Th
is

 s
ec

tio
n

cr
ea

te
s

a
co

m
m

on
 ti

m
el

in
e

fo
r t

he
 d

at
as

et
s.

 T
ha

t i
s,

it

fin
ds

 a
ll

un
iq

ue
 e

po
ch

s,
 p

la
ce

s
th

em
 in

 c
hr

on
ol

og
ic

al
 o

rd
er

,
an

d
in

de
xe

s
ea

ch
 d

at
as

et
 a

cc
or

di
ng

 to
 th

is
 n

ew
ly

 d
efi

ne
d

or
de

r.

Th
is

 s
ec

tio
n

ta
ke

s
al

l d
en

se
 d

at
as

et
s

an
d

at
te

m
pt

s
to

 d
et

er
m

in
e

th
e

"m
ea

n"
 v

al
ue

 o
f t

he
 u

nd
er

ly
in

g
tim

es
er

ie
s,

 n
ot

 ju
st

 th
e

el
em

en
ts

 o
f t

he
 ti

m
es

er
ie

s
w

e
ha

ve
 s

am
pl

ed
.

Th
is

 s
ec

tio
n

de
co

m
po

se
s

an
d

fil
te

rs
 a

ll
de

ns
e

da
ta

se
ts

si

m
ul

ta
ne

ou
sl

y
in

to
 a

 s
m

al
l n

um
be

r o
f l

in
ea

r c
om

po
ne

nt
s.

Th
is

 s
ec

tio
n

co
ns

tru
ct

s
or

 lo
ad

s
a

fa
ul

t m
od

el
, a

 la
pl

ac
ia

n
op

er
at

or
 fo

r t
he

 fa
ul

t m
od

el
, a

nd
 th

e
G

re
en

's
 fu

nc
tio

ns
 fo

r t
he

fa

ul
t m

od
el

.
It

al
so

 p
ro

je
ct

s
th

e
G

re
en

's
 fu

nc
tio

ns

Th
is

 s
ec

tio
n

in
ve

rts
 e

ac
h

of
 th

e
co

m
po

ne
nt

s
fro

m
 th

e
Li

ne
ar

De

co
m

po
si

tio
n

st
ep

 fo
r s

lip
 o

n
th

e
fa

ul
t m

od
el

 fr
om

 th
e

O
bt

ai
n

Fa
ul

t M
od

el
 s

te
p.

 A
ny

 s
pa

rs
e

da
ta

 is
 in

co
rp

or
at

ed
 in

to
 th

e
in

ve
rs

io
n.

Th
is

 s
ec

tio
n

ta
ke

s
th

e
in

ve
rte

d
sl

ip
 h

is
to

ry
 a

nd
 c

re
at

es

pr
ed

ic
tio

ns
 o

f d
is

pl
ac

em
en

ts
 a

t t
he

 s
ur

fa
ce

. A
ls

o,
 th

e
se

ct
io

n
ca

lc
ul

at
es

 s
ta

tis
tic

s
ab

ou
t t

he
 m

od
el

, p
lo

ts
 th

e
m

od
el

 a
nd

ou

tp
ut

s
m

an
y

va
ria

bl
es

 to
 A

SC
II

fil
es

.

Th
is

 s
ec

tio
n

se
ts

 u
p

w
ha

t d
ire

ct
or

ie
s

an
d

pr
ef

er
en

ce
s

fil
es

 w
ill

 b
e

us
ed

 th
ro

ug
ho

ut
 th

e
co

de
.

Lo
ad

 D
at

a

Ca
lc

ul
at

e
W

ei
gh

ts

Cr
ea

te
 T

im
el

in
e

Ce
nt

er
 D

at
a

Li
ne

ar
 D

ec
om

po
si

tio
n

O
bt

ai
n

Fa
ul

t M
od

el

In
ve

rt
Li

ne
ar

 C
om

po
ne

nt
s

Ca
lc

ul
at

e
M

od
el

 P
re

di
ct

io
ns

In
iti

al
iz

e
Sc

en
ar

io
lo

ad
_p

re
fe

re
nc

es

lo
ad

_s
ce

na
rio

_i
nf

or
m

at
io

n

cr
ea

te
_t

im
el

in
e

PC
AI

M
_o

ut
pu

t

cr
ea

te
_p

re
di

ct
io

ns

m
od

el
_s

ta
tis

tic
s

in
ve

rt_
co

m
po

ne
nt

s

ru
n(

in
ve

rs
io

n_
pa

ra
m

et
er

s_
fil

e)

ge
t_

fa
ul

t_
m

od
el

ru
n(

m
od

el
_p

ar
am

et
er

s_
fil

e)

ru
n(

de
co

m
po

si
tio

n_
pa

ra
m

et
er

s_
fil

e)

de
co

m
p_

da
ta

ce
nt

er
_d

at
a

ru
n(

ce
nt

er
_p

ar
am

et
er

s_
fil

e)

lo
ad

_a
ll_

da
ta

ru
n(

sc
en

_p
ar

am
et

er
s_

fil
e)

Full PCAIM Driver Functions

w
ei

gh
t_

ca
lc

se
pa

ra
te

_s
pa

rs
e_

da
ta

Th
is

 s
ec

tio
n

ca
te

go
riz

es
 th

e
lo

ad
ed

 d
at

a
in

to
 te

m
po

ra
lly

 s
pa

rs
e

an
d

te
m

po
ra

lly
 d

en
se

 d
at

a
ba

se
d

on
 th

ei
r d

at
a

ty
pe

Ca
te

go
riz

e
Da

ta

pr
oj

ec
t_

al
l_

gr
ee

ns
_f

cn

op
tim

iz
e_

of
fs

et
s_

fin
al

ru
n(

pl
ot

tin
g_

co
m

m
an

ds
_fi

le
)

Figure 2.2: Diagram of the full PCAIM program.

2.2. BASIC ASSUMPTIONS 9

Linearity: We can calculate the effects to the observation points from finite dislocations
on a pre-defined fault using Green’s functions that are linear both in time and
between sources.

Low-Rank: We assume that most of the data can be described with a small number of
linear components. That is, the data matrix X has low-rank.

2.2.1 Invertibility

For any vector of measurements on the surface ~d, we assume that there exists a fault slip
history ~l in F such that if G is a set of Green’s functions converting slip at depth on
fault F to surface displacements,

~d = G(~l). (2.2)

2.2.2 Linearity

For any set of Green’s functions G = {G1, G2, · · · , GN} relating slip on patches on F
to an observation point p and time variations of slip at depth on these patches T =
{f1(t), f2(t), · · · , fN(t)} defined for some t = t1, t2, the change in displacement at p
between t1 and t2 is,

dp(t1 → t2) = dp(t2)− dp(t1) (2.3)

= G (T (t1 → t2)) (2.4)

=
N∑
l=1

(Glfl(t1 → t2)) (2.5)

=
N∑
l=1

(Glfl(t2)−Glfl(t1)) . (2.6)

In equation 2.3 we use the linearity of measurements at the observation locations between
times t1 and t2. In equation 2.4 we use invertibility of displacements between any two
epochs. In equation 2.5 we use the linearity in space assumption, specifically the effect
of two dislocations on point p is the sum of the effect of each dislocation on observation
point p. In equation 2.6 we use the linearity in time assumption, specifically the effect on
the observation point p for each dislocation is the difference of the cumulative effect on
the observation point p of the difference of slip at depth at times t2 and t1.

The Linearity assumption is intentionally written to be very general.

10 CHAPTER 2. THEORY

A benefit of the linearity assumption regarding the measurements of surface displace-
ments is that we can decompose the time-series into a number of linear components. For
example, we can thus apply singular value decomposition (SVD) (or any other linear
decomposition composed of linear combinations of the columns) to a complete matrix of
the time-series and invert the components.

2.2.3 Low-Rank

The low-rank assumption is what allows us to truncate the decomposition and approx-
imate the original matrix. We only want to model real surface displacements as slip at
depth, not any noise that may be present in the dataset. However, every dataset has
noise and we need a way to filter out the noise. Principal Component Analysis (PCA)
via truncation of a singular value decomposition is a common solution to this problem.
Traditional PCA effectively assumes that every datum has the same error, or that the
data matrix has a rank-1 error matrix (so we can perform weighted SVD). This is far from
true in the case of most GPS time series, especially where there are missing data in the
time-series. We take use the same approach of traditional PCA of modeling the data as
a sum of a small number of linear components, but we employ a different decomposition
as described in Section 2.4 that allows arbitrary weights places on each datum.

The user must justify this assumption by (1.) assessing the amount of data χ2 ex-
plained by each component, and (2.) demonstrating the residuals from the chosen number
of components can be considered as noise.

2.3 Centering

PCAIM method relies on the fact that each component U can be inverted for fault slip
at depth [KA10]. There must be a solution of displacement at depth, L, such that when
we multiply on the left by the Green’s functions

U ≈ GL. (2.7)

Then we note that we can replace U in X ≈ USV t by equation 2.7 to get

GLSV ≈ X. (2.8)

However, except in the case of spatially continuous data (such as InSAR), there is no
simple way to compute the relative values of the rows of X as they all have arbitrary
offsets. In other words, the displacement time-series [−2,−1, 1, 2] represents the same

2.3. CENTERING 11

deformation over four epochs as the time series [1000, 1001, 1003, 1004]. This means
that we would want our representation in USV t to be the same for both. These two
time-series viewed as vectors are close to orthogonal. The only difference between them
is a constant offset of 1002 – which means nothing geodetically. Nonetheless, mathe-

matically the difference between A =

[
−2 −1 1 2
−2 −1 1 2

]
being a rank-1 matrix and

B =

[
−2 −1 1 2

1000 1001 1003 1004

]
being a rank-2 matrix is very significant. A one-

component decomposition of A completely explains the data whereas the one-component
decomposition of B does not. In other words, in the case where the time series from
the different sites have missing data at different epochs the naive centering of X could
introduce non-physical offsets between the various rows of X.

In order to avoid this issue in cases where the data is missing completely at random
(MCAR), we can just remove the error-weighted mean from the each time-series individ-
ually [LR02]. This forces the time functions in V to be zero mean or very close to zero
mean; otherwise the weighted norm of V and any row of our data matrix X would be
different and we could improve the fit by adjusting X up or down by a constant. We say
“very close to zero” because V will likely only have a very particular weighted mean (not
necessarily the arithmetic mean) that is zero. The MCAR assumption, however, almost
never holds for real data sets. For example, cGPS3 stations often are missing large chunks
of data from being installed after the surrounding stations, equipment failure, theft, or
inability to collect data. This means there may be a systematic bias in the estimate of the
mean in comparison to an entire time-series. See Figure 2.3 for an example of how using
the weighted mean on datasets with data that are not MCAR gives a wrong answer for
the mean. A wrong mean, as we have seen, can decrease the amount of data explained
for a given number of components. As our principal goal is to explain as much data as
possible with the smallest number of components, we need a better way to estimate the
mean.

One solution to this problem is to model the time series and impute the missing data
values [LR02]. However, even this solution suffers two drawbacks. First it’s not entirely
clear how to model the time series without assuming a functional form for the time
series, something we intentionally are avoiding as such an assumption would further bias
the final solution. Second, it is not altogether clear what weight to give these new data
points. Instead we invoke the assumption of low-rank in order to design a model where
all time functions (i.e. columns of V) to have zero mean and the mean of each time-series
is allowed to vary.

Because we expect the signal at all closely placed temporally dense stations to be
approximately from the same underlying time functions (this is implicit in the low-rank

12 CHAPTER 2. THEORY

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

D
is

pl
ac

em
en

t

Time−series
Real Mean
Est. Mean

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

D
is

pl
ac

em
en

t

Time−series
Time−series Missing Data
Real Mean
Est. Mean

Figure 2.3: The Importance of Proper Centering: We model a logarithmic decay, for
instance from post-seismic relaxation, for 100 equally-spaced epochs with a time constant
of 50 epochs. The true mean of this time-series is 0.6534, of which we have a good estimate
(0.66068) even with error of σ = 0.1 (Left). However, if we are missing the first 20 epochs,
the estimate of the mean is 0.77544 (Right). If we knew the functional form of the time-
series, it would be easy to get a good estimate of the mean.

assumption), simply with different offsets and geometric factors, our strategy is to find
the mean at the same time as we do a linear decomposition. That is, we want to find a
decomposition

USV t +M ≈ X (2.9)

with USV t as low rank as possible explaining as much chi2 as possible. A further com-
plication we need to avoid is a trade-off between USV t and M . For any k, if (USV t+M)
is a good model of X, then US(V t + c) + (M +

∑
USc) = (USV t + M) is also a good

model for any constant matrix c (indeed, this holds for any matrix with constant rows).
While this does not actually change U (and consequently does not change L) in the case
given, it represents additional degrees of freedom we wish to remove from the model. By
forcing V to have zero mean, these degrees of freedom are removed and the means for the
datasets are determined for X by the best values of M . How we find this decomposition

2.4. DECOMPOSITION 13

of X into USV t + M is described in Section 2.4 as it relies on the same basic approach
as the general decomposition step of the PCAIM algorithm.

2.4 Decomposition

If we have a data set that is not missing any data and has identical error bars on each
datum from any given time-series (or identical error bars on each datum from any given
epoch), then we can decompose the data into a small number of linear components using
truncated Singular Value Decomposition (tSVD) or weighted truncated SVD (wtSVD).
tSVD minimizes the variance between the original matrix and a rank-k matrix. For nearly-
complete time-series, such as that recorded by the SuGAR network from the post-seismic
relaxation from the Nias 2005 earthquake, we can impute the missing data by assumption
of some functional form for the each time-series[KA10]. However, the time-series may not
always be so complete, we may not want to assume a particular functional form for the
time-series, or the data may have greatly varying error bars. To decompose the data into
a number of linear components in this case, we need a different decomposition than SVD.

The ‘reduced Chi-squares’, χ2, is a most commonly used quantity to characterize the
fit between observations and predictions. Mathematically, it is defined to be

χ2 =
∑
i,j

(
Xmodel(i, j)−Xdat(i, j)

σ(i, j)

)2

. (2.10)

As this is (or at least can be) what we are trying to minimize when we say we want to
“fit the data with a model,” it makes sense for our decomposition to attempt to minimize
this quantity. The expression for a general linear model Xmodel is UV = Xmodel, where U
and V are matrices of compatible dimension and UV is the standard matrix product of
U and V . We will often refer to U as the spatial functions or spatial basis functions, and
to V as the temporal functions or temporal basis functions. For matrix entries X(i, j)
where we do not have any data, we assign σ(i, j) = ∞ and choose X(i, j) to be any

finite value. Thus the contribution from the (i, j) entry will be
(
Xmodel(i,j)−Xdat(i,j)

σ(i,j)

)2
=(

Xmodel(i,j)−Xdat(i,j)
∞

)2
= 0. This formulation of the decomposition problem allows us to

consider decompositions for incomplete datasets and datasets with highly variable error
bars.

To the best of the author’s knowledge, this decomposition, referred to here as the
Srebro-Jaakkola decomposition, was first introduced in [SJ03] and has been successfully
used in a number of applications in other fields. One important and counter-intuitive

14 CHAPTER 2. THEORY

point is that several properties of the Srebro-Jaakkola decomposition are quite different
from traditional SVD. A few of those points the author deems most important are listed
below.

1. The best rank-k approximation of Xdat is not the rank-(k−1) approximation of Xdat

plus an additional component.

In traditional SVD, we compute the first component, subtract out the first com-
ponent from the matrix, compute the second component, subtract out the second
component from the matrix and so on until we have a zero matrix left over. By the
nature of singular vectors, the best approximation of Xdat with k linear components
is the first k components as found iteratively above. However, this is not true with
the Srebro-Jaakkola decomposition. For example, take the following data and error
matrices:

Xdat =

1 2 3 4
2 3 4 5
1 3 4 5
1 2 3 5

 , Xerr =

1 10 1 1
10 10 10 10
1 1 1 1
10 1 1 1

 (2.11)

For clarity, we write the decomposition as USV t like in SVD, where U, V are or-
thogonal matrices and S is diagonal. All calculations were done to double precision
and are truncated here for clarity.

The best one-component model of Xdat is,

U1 =

−0.407041
−0.576466
−0.558243
−0.436313

 , S1 = (12.735031) , V1 =

−0.232065
−0.400816
−0.547421
−0.697010

 (2.12)

and has χ2 = 3.949337.
The best two-component model is,

U2 =

−0.414111 0.193785
−0.556585 −0.776221
−0.54068 0.136531
−0.475805 0.584198

 , S2 =

(
13.155585 0

0 0.799207

)
,

V2 =

−0.209242 −0.729478
−0.379241 −0.37701
−0.532292 −0.183232
−0.727364 0.540511

 (2.13)

2.4. DECOMPOSITION 15

and has a χ2 = 0.566818.
However, if we compute the second component as the first component of (Xdat − U1V1),
we have,

U ′2 =

−0.407041 −0.407176
−0.576466 0.213847
−0.558243 −0.249282
−0.436313 −0.852254

 , S ′2 =

(
12.735031 0

0 1.085772

)
, (2.14)

V ′2 =

−0.232065 0.387613

−0.400816 0.188841

−0.547421 −0.063751

−0.697010 −0.900017

(2.15)

with a χ2 = 1.064647.
Feel free to play with this example in the file PCAIM_manual_examples.m.

While it’s difficult to compare these closely by eye, a few aspects strike us imme-
diately. First, the first column of V and the first column of U are not the same for
the two decompositions. Second, the first weight (similar to singular values) is not
the same. Applying some numerical test, we indeed see that U1 and V1 do not even
lie in the space spanned by the columns of U2, V2!

max(S2(:))−max(S1(:)) = 0.420554 (2.16)

norm(U ′1 · U2) = 0.999546 (2.17)

norm(V ′1 · V2) = 0.999899 (2.18)

2. The weight of a given component is not proportional to its fraction of χ2 explained.

In traditional SVD or wSVD, the singular values are proportional to the amount
of chi2 explained by the model, but this does not hold for the Srebro-Jaakkola
decomposition. This is more straightforward and more easily seen than the previous
property. Consider the data and error matrices:

file:PCAIM_manual_examples.m

16 CHAPTER 2. THEORY

Xdat =

1 2 3 4
2 4 6 8
3 102 9 12
4 8 12 16

 , Xerr =

1 1 1 1
1 1 1 1
1 102.5 1 1
1 1 1 1

 (2.19)

It is clear that a very good first component is U =

1
2
3
4

 , V =

1
2
3
4

.

In fact the best one-component model is very close to this, U =

1.0000
2.0000
3.0001
4.0000

 , V =

1.0006
1.9920
3.0019
4.0025

. Normalizing the components, we get S = 30.0003.

Since Xdat is a rank-2 matrix, it’s clear that a best two-component model is U =
1 0
2 0
3 107

4 0

 , V =

1 0
2 0
3 1
4 0

.

Normalized, this is S =

(
30 0
0 107

)
. By any reasonable metric, the ||S2||2 = 107

causes the two-component model to have a very large amount of variance explained
compared to the one-component model with S1 ≈ 101. However, it is equally clear
that the second component is unnecessary to explain the data because of the large
error of Xdat(3, 2) which is principally responsible for the large norm of S2. Thus
despite the very large “weight” in S accorded to the second component (similar to
singular values from SVD), much more of the χ2 from the data is explained by the
addition of the component with a smaller “weight”.

These two considerations change the way the various ranks of decompositions must be
interpreted. In order to compare the fit of two different models we cannot simple compare
the “singular values”1 (S) or weights from the decomposition, and we cannot build an

1The author admits these are not strictly singular values, but the use of vocabulary is for those
familiar with SVD.

2.4. DECOMPOSITION 17

optimal model iteratively the way we could using SVD.
For our purposes, we have implemented three different methods for finding two differ-

ent incarnations of this decomposition. As a verification of the EM and CG algorithms,
the user is free to check that the EM algorithm and MATLAB’s SVD routine obtain the
same result (up to numerical error) if the tolerance on the EM algorithm is small enough
and the error matrix is a constant value.

2.4.1 Srebro-Jaakkola Decomposition – Expectation
Maximization

Using code given to the author by Nathan Srebro as the base [Sre], we have implemented
an expectation maximization (EM) routine for computing the optimal rank-k decompo-
sition. See [SJ03] for precise definition of the EM algorithm.

2.4.2 Srebro-Jaakkola Decomposition – Conjugate Gradient

Using code posted for free use online by Martin King [Kin05] for the general conjugate
gradient algorithm, we implemented the local search for the optimal rank-k decompo-
sition. In the author’s experience, almost all2 starting locations end up at the same
minimum which the author takes to be the global minimum. We use the objective func-
tion equal to the weighted χ2 and the derivatives of the weighted χ2 with respect to each
entry of U and each entry of V . In order to reduce computation time, we have replaced
the general line search algorithm of [Kin05] with an exact minimum solving along the
direction of search for this specific objective function

2.4.3 Srebro-Jaakkola Decomposition – CG Meanless-V for
Centering

Using code posted for free use online by Martin King [Kin05] for the general conjugate
gradient algorithm as a base, we implemented the local search for the optimal rank-k
decomposition. In the author’s experience, almost all3 starting locations end up at the
same minimum which the author assume to be the global minimum. We use the objective
function equal to the weighted χ2 for the model UV t + M and the derivatives of the
weighted χ2 with respect to each entry of U , the first n−1 entries of V , and the mean for
each time-series M . In order to reduce computation time, we have replaced the general

2Except for where U and/or V start out being identically zero.
3Except for where U and/or V start out being identically zero.

18 CHAPTER 2. THEORY

line search algorithm of [Kin05] with an exact minimum solving along the direction of
search for this specific objective function. Analytical expression are in Appendix C.

2.4.4 Derivatives for CG algorithm

For each of the objective functions we wish to use with the CG algorithm, we need to find
the analytic derivative. We do that in Appendix B so the user can verify the calculation
if desired.

2.5 Temporally Dense vs. Sparse Data

A major advantage to the decomposition in Section 2.4 is that we can accommodate
missing data points. This allows us to do combined analysis datasets with different fun-
damental frequencies, such as cGPS networks and campaign GPS measurements. Prob-
lems arise, however, when there are too few data compared to the number of components
used.

In many ways, modeling only makes sense in terms of prediction. If we are not at-
tempting to predict anything, we might as well fit every set of N data points with an
order N − 1 polynomial, which will always fit perfectly.

Similarly, if we have only N epochs worth of data for some dataset, the combination
of a mean (1 parameter per time series) and N − 1 components (N − 1 parameters per
time series) can fully explain almost any time series4. This implies that any error will be
fully included in the inversion step. More importantly, the predictions from the model
depend very heavily on the individual value of the error on each datum. We avoid this
difficulty by having two designations for data:

sparse data, meaning (number of epochs) / (number of components), and

dense data, meaning (number of epochs) � (the number of components).

Any data that is designed dense is centered and used in the decomposition. Any data
that is designated sparse is not centered or used in the decomposition. Instead, it is added
to the inversion as a set of additional linear equations (see Section 2.7.2 for details) and
we say that the sparse dataset allows us to apply sparse constraints to the inversion.

4The mean + N−1 components explaining any time series does depend slightly on the time functions
in V , but this holds for all but specially constructed V . Proof is left as an exercise to the user.

2.6. FAULT MODELS 19

2.6 Fault Models

The decomposition and inversion methods do not depend on the type of the data or of
the source of deformation as long as there exists an appropriate set of Green’s function
relating each observation to each source element. However, for the purposes of this man-
ual, we only describe the construction of a finite fault model, of a discrete Laplacian for
the fault model, and the Green’s functions for that fault model.

For this version of the code, we have implemented two different types of source mod-
els, rectangular dislocations and point dislocations in a homogenous elastic half-space
[Oka92].

2.6.1 Construction

Constructing a fault model is an attempt to approximate the true crustal structure at or
beneath the earth’s surface, and we provide two simple formalisms with the code to help
the user build such a model. The first will be referred to as a rectangular source model
[Oka92], which is composed of finite dislocations in an elastic half-space on rectangular
patch elements with two edges of each patch parallel to the z = 0 surface. The second will
be referred to as a point source model [Oka92], which is composed of finite dislocations
in an elastic half-space on point elements with a given seismic mechanism. The source
model as a whole is a finite collection of sources from whatever formalism we choose.

Each source element is composed of several parameters which describe its dimensional
extent and influence. These definitions are given by 7 parameters for the rectangular
source element case (local x, local y, local z, strike angle, dip angle, length, width) and
6 parameters for the point source element case (local x, local y, local z, strike angle,
dip angle, area). In both cases (local x, local y, local z) are measured from the local
coordinate frame’s origin to the center of the source element. See Figure 2.4 for a graphical
description of these parameters. The format for these input files is in Section 8.2.1.

We include scripts that allow the user to specify a list of points (format in Section
8.2.3) which are assumed to be on a two-dimensional surface from which an approximately
regular triangular mesh is resampled. The user may apply smoothing to this surface if
the points are approximate (e.g. from a relocated earthquake catalog.)

2.6.1.1 Resampling the Fault

Assume we already have a fault surface (or a cloud of points that approximate a fault
surface) we want to decompose the fault into individual patches. Instead of sampling
regularly in geographic coordinates or a standard local reference frame (i.e. using a co-

20 CHAPTER 2. THEORY

Width

Length

Dip

N
Strike

Dip

N
Strike

Are
a

Figure 2.4: Fault Element Description: a graphical description of the source elements for
the rectangular source element case (strike angle, dip angle, length, width) and the point
source element case (strike angle, dip angle, area). (x,y,z) for any element is measured
from the local coordinate origin to the center point of the element.

ordinate transform to change (E,N,U) triples into (x, y, z) triples, where at the origin
the x direction is E and the y direction is N), we transform into a coordinate frame
where x and y lay in the best-fitting plane to the original fault model. This allows us to
intelligently resample any fault surface that deviates as much as ≈ 45◦ away from being
planar; spacing will then differ by less than a factor of

√
2. Resampling the fault depths

z in (x, y) either the geographical reference frame or a standard local reference does not
do the job. For example, consider a model of a strike-slip fault. There is at most one line
of points in the fault surface, and it is not well-defined at what depth these should lie.
Even strike-slip faults that are not perfectly vertical have problems in that small changes
in dip can drastically change the resampling density in geographical or standard local
coordinate frames (i.e. (x, y, z)). Instead of sampling in one of these reference frames, we
transform into a reference frame defined by the user (or estimated automatically). The
first two axes of this reference frame are assumed to be an approximately best-fitting
plane to the fault surface and the third axis is normal to the first two axes.

2.6.1.2 Visual representation

In order to visualize a source model, we often plot the rectangular source elements as
rectangles and the point source elements as triangular patches in a half-space. However,
this can be cumbersome when the number of patches becomes large. Instead we rep-
resent both source elements as colored circles in a three-space where the color of the

2.6. FAULT MODELS 21

circle depends on the amount of displacement on that element. If the direction of slip
is important (as it almost always is), vectors will be plotted representing the direction
of slip. We often plot contextual information for the slip model, such as the position of
surface observations and coast information. An example of this type of plotting is given
in Figure 2.5, and the user should note that within MATLAB the user can view the fault
from any angle by using the rotation tool in the MATLAB plot window.

2.6.2 Discrete Laplacian

The two-dimensional Laplacian5

∇2 =
∂2

∂x2
+

∂2

∂y2
(2.20)

is often used to regularize ill-posed problems and smooth rough functions.
In order to use it in the context of a discrete grid such as our source model, we must

find a discrete version of this equation. The user is likely familiar with the traditional
computational template,

0 1 0
1 −4 1
0 1 0

, (2.21)

used to approximate the Laplacian to 1st order (That is, the order of the error decays
as (∆x)2) at the central square on a regular square grid [Ise04]. That is to say, we
approximate

∇2(x, y) = −4f(x, y) + f(x+ δx, y) + f(x− δx, y) + f(x, y − δy) + f(x, y + δy)

where δx = δy is the spacing of our regular square grid. This (or a minor variant thereof)
has been used successfully to regularize the solution to many geophysical inversions.
However by allowing a geometry defined by randomly distributed point sources, we need
an approximation of the Laplacian that works for irregular grids. We obtain a satisfactory
solution to the problem of an irregularly sampled planar grid from [Hui91], which is
summarized in Appendix D. This gives us the approximation,

∆f0 ≈
N∑
i=1

w
(2)
i (fi − f0), (2.22)

5For Mogi (inflation) sources, the three-dimensional Laplacian is needed.

22 CHAPTER 2. THEORY

−300 −200 −100 0 100 200 300

−300

−200

−100

0

100

200

300

SAMP

PBAIPTLOPSMK

BITI

BTHL

PBLI

LHWA

W−E (km)

Nias 2005 GPS Post−seismic

BSIM

LEWK

S
−

N
 (

km
)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

−300
−200

−100
0

100
200

300

−300

−200

−100

0

100

200

300

−150

−100

−50

0

S−N (km)

SAMP

PBLI

PBAI

BITI

PTLO

BTHL

LHWA

PSMK

BSIM

LEWK

Nias 2005 GPS Post−seismic

W−E (km)

D
ep

th
 (

km
)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 2.5: Sample slip plot: example slip and displacement plots in MATLAB repre-
senting superficial afterslip on the Sunda Megathrust from the Nias, 2005 Earthquake
[HSA+06, KA10]. Note that these are not intended to be publication-quality plots.

2.7. INVERSION 23

where f0 is the function value at the “central” point, fi is the function values at the
ith neighboring point, N is the number of neighboring points defined by the user, and
wi are the weights derived in Appendix D. We put ∆ into matrix form so that for any
slip distribution l, ∆l is the discrete Laplacian of l. Within the code we use this discrete
Laplacian both as regularization of the inversion step and as a method of smoothing a
swarm of points estimating a fault surface.

When applied either in order to smooth a fault surface or regularize an inversion, we
must decide on the weight the Laplacian will have. We define a parameter lap_weight

toward this end, which is a double and is linearly multiplied by the discrete Laplacian
operator in the code before the Laplacian operator is used.

2.6.3 Green’s Functions

The Green’s functions are calculated using the original Fortran from [Oka92] via a wrap-
per by Hugo Perfettini. See Section 1.2.1 for details.

2.7 Inversion

Once we have the spatial functions for dense datasets (U = [U1, U2, · · ·Ur], r is the
number of components used in the decomposition step) and the Green’s functions (G),
we are ready for the inversion step.6 We let l be some unknown slip distribution at depth,
then the general formula for the surface displacement field d resulting from l is

G(l) = d (2.23)

The inverse problem is then solving for l given d and a known form of the Green’s
functions. We have assumed that G is linear, so Equation 2.23 becomes,

G · l = d. (2.24)

Because we actually have r surface displacement fields (U1, · · · , Ur) we wish to invert
and the Green’s functions are the same for each displacement field, Equation 2.24 becomes
the set of equations,

Gi · li = Ui, i = 1, . . . , r

G · li = Ui, i = 1, . . . , r (2.25)

6Note that the user may wish to rescale the spatial functions and Green’s functions to allow different
input datasets to have different weights during the inversion. This is done by multiplying the Green’s
function and spatial functions for the ith dataset by some constant pi.

24 CHAPTER 2. THEORY

By independence of rows and columns of a matrix, solving Equation 2.25 is equivalent
(both in computation time and solution) to solving,

G 0 0 · · · 0
0 G 0 · · · 0
0 0 G · · · 0
...

...
...

. . . 0
0 0 0 · · · G

 ·

l1
l2
l3
...
lr

 =

U1

U2

U3
...
Ur

 (2.26)

This is the basic form with which we approach the inversion step of the algorithm.
The block-diagonal matrix on the left hand side (LHS) of Equation 2.26 is called the
design matrix for our problem, the vector on the LHS of Equation 2.26 is called the
solution or solution to the inversion problem, and the vector on the RHS of Equation
2.26 is the data or data for the inversion problem.

2.7.1 Regularization

The inversion of geophysical data for source models is often an ill-posed problem. This
means we have many solutions to the inversion that are mathematically plausible, so
the solution to the problem of fitting the observed surface displacements is not unique.
To reformulate the ill-posed problem we make additional assumptions to regularize the
problem.

While there are a number of regularization methods, the default regularization method
implemented in the code assumes that the smoothest slip distribution fitting the data is
the most plausible solution. In practice we impose a least-squares penalty on a non-zero
value of a discrete Laplacian operator7 (∆) on the slip in the dip-slip and strike-slip
dislocations for each slip distribution. To impose this penalty, we augment the design
matrix with a block-diagonal form of the Laplacian (one block per component being
inverted) and augment the data vector with zeros (one zero per patch per component
being inverted) in Equation 2.26 to obtain,

7Section 2.6.2 has a brief description of this operator and Appendix D has a detailed account of its
derivation for a non-uniformly sampled plane, which is a good local description for fault models without
splays.

2.7. INVERSION 25

G 0 0 · · · 0
0 G 0 · · · 0
0 0 G · · · 0
...

...
...

. . . 0
0 0 0 · · · G
∆ 0 0 · · · 0
0 ∆ 0 · · · 0
0 0 ∆ · · · 0
...

...
...

. . . 0
0 0 0 · · · ∆r

·

l1
l2
l3
...
lr

 =

U1

U2

U3
...
Ur
~0
~0
~0
...
~0

(2.27)

If there is no sparse data in the datasets, then this is the final form of the inverse
problem and we can use either a standard least-squares algorithm, non-negative least-
squares algorithm, Lp-norm solve for any p, etc., to solve the inverse problem.

2.7.2 Addition of Sparse Constraints

So far sparse data have not been considered. Since inversion is the step that determines
the final slip model, we must add these data here before performing the inversion. We
will further augment the design matrix and data vector with constraints representing the
displacement at the surface from the sparse datasets.

We start with the joint inversion formulation from Equation 2.27. We note that from
the decomposition assumptions, the slip at between epochs t1 and t2 is

L[V (t2, :)− V (t1, :)]
t,

so displacement dA on the surface at some set of points point A from the slip between
epochs t1 and t2 is,

GA · L[V (t2, :)− V (t1, :)]
t = dA, (2.28)

where GA are the Green’s functions for point A only. By writing out the definition of
matrix and vector multiplication, we can see that the ith row of the matrix Equation
2.28 is,

26 CHAPTER 2. THEORY

∑
j

GA(i, j) ·
∑
k

L(j, k)[V (t2, k)− V (t1, k)] = dA(i) (2.29)∑
j

GA(i, j) ·
∑
k

[V (t2, k)− V (t1, k)]L(j, k) = (2.30)

[V (t2, 1)GA(i, :), V (t2, 2)GA(i, :), · · · , V (t2, r)GA(i, :)] ·

L1

L2
...
Vr

 = (2.31)

which, as it is true for all i, is equivalent to,

[V (t2, 1)GA, V (t2, 2)GA, · · · , V (t2, r)GA] ·

L1

L2
...
Vr

 = dA. (2.32)

This means we now have the predicted displacement between t1 and t2 at the surface
for any set of observation points A in terms of an expression linear in slip parameters
with no other unknowns. We can augment the design matrix with the LHS of Equation
2.32 and augment the data vector with dA (RHS of Equation 2.32), and we have added
a sparse dataset as an additional set of equations in our linear system. If we do similar
calculations for all time periods at which we have sparse data, we obtain a design matrix
that takes into account every sparse dataset measurement at the same time.

In practice, we are not quite done. Because the original d have all been normalized,
it’s possible that the relative weight of the sparse dataset is much larger than that of
the original dataset. To correct for this we multiple each dataset by a scaling factor pk
which can be different for each dataset. This gives us the freedom to emphasize any given
sparse dataset as little or as much as the user desires. Also it allows for renormalization
of uncertainties if the user is unsure that the uncertainties assigned to the various types
of data are equivalent or if uncertainties are not given a priori.

Chapter 3

Practice

In this chapter wedemonstrate the general style of the code so the user can better un-
derstand the conventions we (try to) follow and the MATLAB shortcuts we used.

3.1 MATLAB Review

In this subsection we review a few of the more commonly used MATLAB funcionalities in
our code. Readers familiar with cell structures and matrix indexing/manipulation/reshaping,
might move to Section 3.2 directly.

There are several matrix shortcuts in MATLAB that we use over and over again in
the code: reshape, (:), and transpose (transpose(A) can also be written as A’).

For example, suppose we have a matrix A = [1,2,3,4;5,6,7,8;9,10,11,12;13,

14,15,16]. Then:

27

28 CHAPTER 3. PRACTICE

A(:) =

1

5

9

13

2

6

10

14

3

7

11

15

4

8

12

16

reshape(A,8,2) =

1 3

5 7

9 11

13 15

2 4

6 8

10 12

14 16

reshape(A’,8,2) =

1 9

2 10

3 11

4 12

5 13

6 14

7 15

8 16

A_prime = A’;

A_prime(:) =

1

2

3

4

5

6

7

8

9

10

11r

12

13

14

15

16

The MATLAB functions max, min, mean are all applied to the columns of an input
matrix. Thus max(A) = [13,14,15,16]. However, we often want to find the maximum
element (minimum element, mean) of an entire matrix. In order to do this, we apply the
function to A(:), which is a column vector (e.g. max(A(:)) = [16]).

Another common convenience we use repeatedly are cell arrays. These are effectively
matrices whose elements can be arbitrary variable types, as opposed to normal matrices
which can only hold single-value numerical variable types such as int, single, or double.
To access indexes of a cell array we use curly-braces ({}) in place of parentheses. For
instance, B = {{0,’zero’},[1,2;3,4]; ’geologist’, [5;6;7]} is a two-by-two cell
array with another cell array (0,’zero’) in entry B{1,1}, a matrix ([1,2;3,4]) in entry
B{1,2}, a string (’geologist’) in entry B{2,1} and finally a column vector ([5;6;7])
in entry B{2,2}. Since B{1,1} is itself, a cell, we can further index this entry to reach
the elements of the cell-within-a-cell, as in B{1,1}{1} to get the numerical value 0 and
B{1,1}{2} to get the string ’zero’.

Our typical usage of cell arrays is to hold matrices or strings of different size that
contain data about different datasets or recording stations. For example the cell array
X_dat contains k cells, where k is the number of datasets in the scenario. Each cell

3.2. NAMING CONVENTIONS 29

Word Abbrev.
number, number of n

function fcn
time-series tseries

calculate, calculation calc
decomposition decomp

scenario scen

Table 3.1: Abbreviations in the Code: these are the standard abbreviations we use
throughout the code.

contains the data matrix (with each row of the data matrix corresponding to a single
time-series from that dataset and each column corresponding to a single epoch from that
dataset) from one of these datasets. Suppose we have loaded two datasets. The first is
a continuous GPS network consisting of 10 stations recording daily over 300 days, and
the second is a set of three continuous strain meters recording daily over 400 days. Then
X_dat{1} would be a 30-by-300 matrix and X_dat{2} would be a 3-by-400 matrix. To
access the second time-series from the second dataset, we would write X_dat{2}(2,:).

3.2 Naming Conventions

We replace some words with abbreviations as listed in Table 3.1. For example, the number
of datasets is the variable n_datasets and the number of time-series is n_tseries.

Often the calculation of a common quantity var_name will be done via a function
var_name_calc. For example, the function used to compute the total number of epochs
(n_epochs) is called n_epochs_calc.

We often use the shorthand m as the number of time-series, n as the number of
epochs, and N as the number of components.

Chapter 4

Tutorial – Inversion of Nias 2005
Postseismic

We assume that the user is familiar with basic MATLAB syntax, MATLAB cell arrays,
and MATLAB plotting functions. If the user need a refresher, please go through MAT-
LAB’s built-in tutorials or tutorials online.

4.1 Geological Background

The Sunda trench in South East Asia has been the location of at least five major earth-
quakes in the last 200 years (Figure 4.1), including the December 26, 2004 Andaman-Ache
Earthquake which killed almost 250,000 people.

4.2 A First Run

The only part of the code the user neesd to modify in order to run it on the user’s local
system is the variable working_dir in the file PCAIM_driver.m, which should be the
local directory into which the user puts the PCAIM code folder. At this point, the user
can execute PCAIM_driver.m after changing the present working directory to the folder
containing PCAIM_driver.m (we suggest pressing F5 to do this).

Several plots will pop up describing the fit to the data, the displacement and slip
associated with various components, and a cumulative slip model with the GPS position
vectors.

31

file:PCAIM_driver.m
file:PCAIM_driver.m
file:PCAIM_driver.m

32 CHAPTER 4. TUTORIAL – INVERSION OF NIAS 2005 POSTSEISMIC

Padang

Bengkulu

1833
(Mw~8.9-9.1)

1797
(Mw~8.7-8.9)

1935
(Mw~7.7)

W
ha

rto
n

Rid
ge

.2 .4 .6 .8 1

Coupling

0

96 98 100 102

-

-

-

6

4

2

2

4

5.7 cm/yr

Enggano

In
ve

st
ig

at
or

Fr
ac

tu
re

Zo
ne

2005
(Mw8.7)

2000
(Mw7.9)

2004
(Mw9.1)

Pagai Is.

Sipora

Siberut

M
entaw

ai Islands

Batu

2007
(Mw 8.4)

2007
(Mw7.9)

1B

2B

1A

1C

2A

Figure 4.1: The Sunda Trench: The geological background for the Nias postseismic re-
laxation example. Adapted from [CAS+08].

4.3. PARAMETERS TO VARY 33

4.3 Parameters to Vary

While the inversion from Section 4.2 happens to be close to the author’s chosen model,
there is a suite of possible models, all of which comes from the same data. Investigating
this suite for reasonable end-member models as well as the user’s chosen model is much
of the art of inversion. In addition to the basic assumptions from section 2.2, we make
assumptions about the centering of the data (section 2.3), the number of temporal and
spatial functions allowed (section 2.4), aspects of the fault model (section 2.6), how
to proceed with the inversion (section 2.7), and regularization of the inverse problem
(section 2.7.1). In this section the user can look at how varying some of the more common
parameters affects the final slip model and data fit.

4.3.1 Scenario Definition: scen parameters.m

1) first_epoch = 1;

2) last_epoch = 450;

3) time_unit = ’day’;

4) sig_time = 3;

5) observation_unit = ’cm’;

6) sparse_types = {’Sparse InSAR’};

7) X_rescale = {1};

By default the scenario uses all the data between date “1” (Line 1) and date “450” (Line
2) in the time unit of “day” (Line 3). In this case, the dates “1” and “450” correspond
to the number of days from the main shock of the Nias 2005 Earthquake. However, time
could have as just as well been in decimal years or days from January 3rd, 1942. The only
parameters that would have to be adjusted to achieve the same results are first epoch,
last epoch, and time unit. Epochs are defined to be identical if they agree to 3 digits
(Line 4) after the decimal point of whatever the internal time unit is, and the model
displacements will be given in centimeters (Line 5). Finally, any dataset with the type
“Sparse InSAR” (Line 6) is declared to be temporally sparse and should not be used in
construction of the time functions.

The optional parameter X_rescale allows rapid rescaling of the data errors, which
is especially useful when there are multiple datasets and the user wishes to rescale the
relative weight of the two datasets in the centering, decomposition and inversion.

Try the following changes separately and together:

1. Change the first epoch to 100 to only invert data after day 100 (inclusive).

34 CHAPTER 4. TUTORIAL – INVERSION OF NIAS 2005 POSTSEISMIC

2. Change the last epoch to 200 to only invert data before day 200 (inclusive).

3. Change the time unit to yr to convert all the input days into years. Note that
this conversion is only a multiplicative factor (i.e. day d is converted to year y =
d/365.25) and affects the meaning of first epoch and last epoch. For example,
the values first epoch = 1, last epoch = 450, time unit = yr, only imports
data after year 1.0 and before year 450.0. Since the input data is in days after the
main shock, any dates before 365.25 days after the main shock will not be imported
or used.

4. Change the observation unit to m. This does not affect the program except that all
measurements and predictions are 100 times smaller than if the observation unit
were cm.

4.3.2 Centering: center parameters.m

1) n_comp_mean = 1;

2) center_function = ’non-basic’;% ’basic’

3) iter_max = 10^5; % needs to be of the order 10^5-10^6

4) tol = 10^(-7); % should be on the order of 10^(-7) or smaller

5) mean_function = ’decomp_CG_means’;

6) func = ’func_mean_zero_sum_V_transform_corrected’;

7) dfunc = ’dfunc_mean_zero_sum_V_transform_corrected’;

<FILE CONTINUES, UNNECESSARY FOR TUTORIAL>

Centering is an important part of data pre-processing for the inversion and can be some-
what delicate (Section 2.3). The number of components to be used is on Line 1, the
centering function is on Line 2, the maximum number of iterations (for centering func-
tions that use such) is on Line 3, the tolerance between iterations (for centering functions
that use such) is on Line 4, the function for determining the means is on line 5 if the cen-
tering is not basic, and the objective function and derivative of the objective functions
for the particular mean_function listed here are on Lines 6 and 7, respectively.

Try the following changes separately and together:

1. Change the centering function to ’basic’. This will use the weighted mean of the
data instead of the mean of a n comp mean-component model, and the rest of the
options are bypassed. Using ’basic’ centering is much faster, but as we are missing
data at several stations for a significant period of time it can give confusing results.

4.3. PARAMETERS TO VARY 35

Compare the slip history of Patch 73 and the principal displacement fields with
’basic’ and ’non-basic’ centering.

2. Change the number of components for determining the data mean to 7. (For
non-basic centering)

3. Change the maximum number of iterations to 10. Once again, this is much faster
but the results can be confusing. Compare the slip history of patch 73 and the
principal displacement fields between 10 and 100,000 iterations. (For non-basic

centering)

4. Change the function tolerance to 0.01 and 10^-15. The former will suffer from being
a poor model of the data, whereas the latter will take more time and give a slightly
better fit to the data. (For non-basic centering)

4.3.3 Decomposition: decomposition parameters.m

1) n_comp = 1;

%%%%%%%%%%%%%%

%%%% EXPECTATION MAXIMIZATION METHOD

%%%%%%%%%%%%%%

2) % decomp_fcn = ’decomp_srebro_EM_project’;

3) %decomp_options = {’tol’,10^(-7),’max_iter’,5*10^4};

%%%%%%%%%%%%%%

%%%% SIMULTANEOUS MULTICOMPONENT CONJUGATE GRADIENT METHOD

%%%%%%%%%%%%%%

4) decomp_fcn = ’decomp_srebro_CG_simultaneous’;

5) max_iter = 5*10^5;

6) tol = 10^(-15);

<FILE CONTINUES, UNNECESSARY FOR TUTORIAL>

36 CHAPTER 4. TUTORIAL – INVERSION OF NIAS 2005 POSTSEISMIC

These parameters affect the decomposition of the data after the centering has taken place.
Line 1 is incredibly important. The model resulting from the inversions depends on the
number of components used during the decomposition. The simplest model in PCAIM is
a single component model, in which the slip distribution only varies in amplitude but not
spatial pattern. As we increase n_comp to the rank of the data matrix, we fit every single
small variation in data regardless of amplitude or correlation with other components.
Lines 2 and 3 offer an alternative (EM) decomposition to the standard CG method
we employ, so these Lines are multually exclusive with the rest of the decomposition_

parameters file. If the user desires to invoke these options, the user should comment
the rest of the file below Line 3 otherwise these selections will be overwritten (by Line
4 and one of the last lines of the file). Lines 4, 5 and 6 all specify the variable parts of
the current implementation of the CG algorithm. The rest of the file calculations certain
variables that are pre-calculated here for efficiency purposes and the user does not need
to change them.

Try changing the following parameters:

1. Change n_comp to 2, 5, and 10. Notice both the increase in computation time and
complexity of the resulting slip models.

2. Change tol to 10−1, 10−5, 10−10 and observe the difference in goodness-of-fit (i.e.
the residual.)

3. Change max_iter to 101 while having a small tol. The program will likely reach
the maximum number of iterations and the fit to the data will almost certainly not
be satisfactory.

4. Comment all the lines after SIMULTANEOUS MULTICOMPONENT CONJUGATE GRADIENT

METHOD and uncomment the two lines after EXPECTATION MAXIMIZATION METHOD.
This will change the decomposition method to EM. Note that in general it is signif-
icantly slower. However, there are artificial cases which it does faster. We suggest
changing back to the CG method after attempting this change because the CG
algorithm is so much faster.

4.3.4 Fault Model: model parameters.m

Try changing the following parameters:

1. Within laplacian_options, change the integer after ’n_neighbours’ to 3, 4, and
10.

4.3. PARAMETERS TO VARY 37

2. Within laplacian_options, change the integer after ’free_surface_depth’ to
100, remove the string ’no_slip_points’ and remove the vector [1:12,12:12:

288,277:288]. This will make it so all patches with a depth of less than 100 km
are allowed to have arbitrary slip on them, i.e. there will be no implicit tapering of
slip to zero at the edges.

3. Reset laplacian_options to what it started as, and change the vector [1:12,12:
12:288,277:288] to [1:12,12:12:288,277:288, 73:76]. This changes which
points on the fault plane have significant penalties on them having slip. In par-
ticular in in this case, we put a very large penalty on slip at patches 73 through 76,
in the middle of the main superficial afterslip patch in addition to the non-surface
edge patches already penalized.

4.3.5 Inversion: inversion parameters.m

Try changing the following parameters:

1. Change the weight of the Laplacian, lap_weight. by power by 10 between 10−4

and 104. This is one of the most subjective parts of the code and requires that the
user make judgments calls as to the correct regularization weight. We suggest the
user try many, many different lap_weight values before deciding on one.

2. Set

invert_options = {...

’FixedRake’,rake,...

};

This chapter has outlined common changes to the major parameters affecting the
inversion results. We strongly encourage the user to play with these and the plotting
functions until the user becomes comfortable with the results of the various parameter
changes. We can almost guarantee that the first inversion attempted will not be the best
inversion geophysically or statistically.

Chapter 5

Tutorial – Loading New cGPS2/cGPS3
Datasets

We go through the process of changing the dataset with which the PCAIM code is working
step by step for the user. For clarity we will everywhere use cGPS3 as the data type,
but everything here will work equally well for cGPS2 data except that any uses of cGPS3
must be replaced, of course, by cGPS2.

5.1 Setup

1. Make a new folder somewhere on the user’s hard driver for the files associated with
the user’s new dataset. We will call this the scenario folder.

2. Make a copy of load_scenario_information_Nias.m in the same directory and
rename the copy to something about the user’s scenario (e.g. if the user is working
on Pisco, load_scenario_information_Pisco.m is a good name).

3. Replace scen_name’s assignment with something that makes sense for the user’s
scenario.

4. Replace scen_dir with the relative path from the PCAIM Code folder or full path of
the user’s scenario. If the user’s scenario folder is in the same directory as PCAIM_

driver.m and has the same name as scen_name, then the user does not have to
change this assignment.

39

file:PCAIM_driver.m
file:PCAIM_driver.m

40 CHAPTER 5. TUTORIAL – LOADING NEW CGPS2/CGPS3 DATASETS

5. Copy the originals of seven other files listed below the assignment of scen_dir into
the user’s scenario folder and change their names as the user feels appropriate (e.g.
change Nias_data_input_file to Pisco_data_input_file if the user is studying
Pisco). The seven files are:

a) Nias_data_input_file

b) scen_parameters,

c) center_parameters,

d) decomposition_parameters,

e) model_parameters,

f) inversion_parameters, and

g) plotting_commands.

Next we’re going to edit three of these seven files and their internally referenced files.
This is all we have to do in order to change scenarios!

5.1.1 data file

1. Decide where to put the user’s data folder and edit the data_input_file according
to the specifications in Section 8.1.1. This should consist of one line and give the
basic information stating we want to load a GPS dataset and where to find a file
containing all the station information.

2. Create a cGPS3 information file in the location specified by the user’s data list file
according to the specifications in Section 8.1.2, or copy the file gps_stations.dat

from the Nias folder and edit the lines to the values appropriate for the user’s
cGPS3 dataset. We suggest doing the latter and doing a find-and-replace for most
of the paths.

3. Format the user’s data files according to the specifications in Section 8.1.2.1 and
place them in files with names agreeing with the cGPS3 information file.

5.1.2 scen parameters file

1. Change first_epoch and last_epoch to agree with the first and last epoch of
the user’s dataset the user wishes to consider. If the user is have problems loading
the first or last data point, decrease first_epoch/increase last_epoch a small
amount.

5.1. SETUP 41

2. Change time_unit to the time unit (e.g. yr for year or day for days).

3. Change sig_time, which is how many decimal places to keep when rounding dates
dates to determine if epochs are the same or different. For example, epochs 1999.154
and 1999.153 would be the same epoch for any integer sig_time ≤ 2, but they
would be considered different epochs for any integer sig_time ≥ 3.

4. Change observation_unit to be whatever the user wants the internal compu-
tations to be done in. If the user’s dataset unit is different, the dataset will be
automatically converted.

5. Do not worry about sparse_types for this tutorial, but this string should agree
with whatever the data type (e.g. cGPS3) is that the user wishes to consider tem-
porally sparse.

5.1.3 center parameters file

The user need not change anything here to check if the import was successful.

5.1.4 decomposition parameters file

The user need not change anything here to check if the import was successful.

5.1.5 model parameters file

I assume the user already has a fault model (either rectangular patches or point sources)
constructed, but we do not assume the user has the Green’s function for the user’s fault
model.

1. Assign the system-readable path of the Green’s function Fortran binaries to
GreensExternalFcnDir. In other words, on Linux/Mac systems there must be a
backslash before spaces, etc.

2. Assign the overall tectonic motion angle in the horizontal plane (in degrees counter-
clockwise from East) to ang_tect. If the user’s fault has vertical (dip = 90◦)
patches, then the user should change vect_tect=[cosd(ang_tect);sind(ang_

tect);0] to a unit vector in three-space so that a principal rake direction on
these surfaces is defined.

42 CHAPTER 5. TUTORIAL – LOADING NEW CGPS2/CGPS3 DATASETS

3. Assign the path to the user’s fault description file (following the conventions in
either of Sections 8.2.1.1 or 8.2.1.2) in the cell after the string ’LoadFaultModel’.

4. Assign the path to the user’s origin description file (following the conventions in
Section 8.2.2) in the cell after ’Origin’.

5. If the user’s fault is composed of rectangular patches, leave the string ’RectangleFault’.
If the user’s fault is composed of triangular patches, delete the string ’RectangleFault’.

5.1.6 inversion parameters file

The user need not change anything here to check if the import was successful. However,
the user may want to adjust lap_weight to get a better initial model.

5.1.7 plotting commands file

The user need not change anything here to check if the import was successful, though it
may help to download and use a coast file for visualization purposes (see Appendix A).

Now the user’s code should run through the whole algorithm and produce slip mod-
els (albeit, probably rather low quality ones that may or may not fit the data well) if
everything was entered correctly!

To hone the model to something geophysically reasonable that also fits the data, the
user should adjust the various parameters listed in Chapter 4.

5.2 The Art of Inversion

This subject is too small for a single section, but we’ll list some pointers and general
debugging ideas for when the user becomes stuck something isn’t working correctly. The
author has come across many such helpful hints in the quality time he has spent with
the PCAIM code.

5.2.1 Strategic Approach

• Save after centering. Centering can take a long time to do right on large datasets.
If the user stops the inversion after centering and saves the current state of the
program, the user can load and run the script from this point instead of re-centering
the dataset.

5.2. THE ART OF INVERSION 43

• Start small. Try a one-component model with an unrestricted inversion at first.
This will take less time to run and will be easier to evaluate since a single time
function and spatial function describe the entire scenario. The user does not even
have to watch a movie of the slip history to understand the slip evolution on the
fault.

• Write scripts to compute the user’s “standard plots” and “standard output vari-
ables”, and place this script at the end of PCAIM_driver.m. This makes viewing
and calculation these automatic and saves the user time.

• Open any of parameters files by using the open command to the right of the com-
ment character % on the line where the parameter file is run.

5.2.2 When things don’t work

Most of the time something will go wrong with the inversion scenario. Here are some
general troubleshooting suggestions that may help.

• clear all, close all, restart the script from the last point at which it seemed to
be working correctly.

• Test end cases, such as gamma = 10^-10 or gamma = 10^10. If these don’t work
out as expected then there’s a problem with a variable or the program.

• Check the signs of the user’s data, fault model, etc.. Having fault patches above the
surface or datasets implying movement in opposite directions will give poor results
compared to what the user expects.

• Look at the difference between the model and data both as a time-series and as a
spatial distribution. What looks good in one may not look as good in the other.

• Look at the predictions at epochs/locations where the user does not have data. If
the predictions are very far off from what is expected at that location, something
may be wrong with the centering, decomposition or inversion.

• Use the “click-to-get-a-red-dot” breakpoints and internal debugger of MATLAB.
Note that clear all removes all breakpoints. See dbcont, dbstep, dbquit in MAT-
LAB’s help.

file:PCAIM_driver.m

Chapter 6

Checklist – Adding a new type of data

Adding a new type of data for inversions is more involved than loading the user’s own
dataset of a different type. However, it has been successfully done on old versions of the
code by at least three different users so far.

Scripts the user needs to edit:

scen_parameters.m: If the new data type is temporally sparse, then the user needs to
add the data type to the cell of strings sparse_types.

load_all_data.m: add a case to the switch statement corresponding to the user’s data
type. Also the user must write a load_<DATATYPE>_data function to load the
user’s data. For consistency, we preferred to use the same style as cGPS2, cGPS3
and InSAR

Warning: If the user has a spatially continuous datasets (e.g. InSAR) that is also
temporally dense, then the user may need to write a new centering algorithm. The
current one assumes that there is one mean per time-series to be removed, which is
not true for some spatially continuous dataets. Otherwise, there is nothing in the
centering the user needs to change.

Green’s Functions: The user will need to provide the user’s own Green’s functions or
write a function to calculate the Green’s functions from the current script setup. For
example, strain meters have Green’s functions that are projections of the direction
of slip on the strike-slip, dip-slip components of slip for the patch which they mea-
sure. This Green’s function is not currently implemented, so the code itself would
have to be changed to check for data type “Strain Meter” and deal differently with

45

file:scen_parameters.m
file:load_all_data.m

46 CHAPTER 6. CHECKLIST – ADDING A NEW TYPE OF DATA

those time-series. Most likely this could be done most easily by putting additional
items into get_fault_model_options (inside the model_parameters file) that are
parsed within get_fault_model.

Similarly, the user will need to write cases for the new data type in project_all_

greens_fcn.

create_predictions: The user may need to change this script to properly calculate
the predictions and model of the user’s data.

Plotting: The user may need to add functionality to the plotting scripts to allow a
proper display of the user’s dataset or to answer the user’s geophysical questions.

Chapter 7

Comprehensive Guide to Options

This chapter describes all of the valid options the user can set in the various parameter
files.

7.1 load scenario information

There are 8 variables to be set in load_scenario_information. The examples are from
the Nias 2005 Postseismic scenario.

1. scen_name. This is a colloquial name that describes the scenario. E.g.:

scen_name = ’Nias 2005 Postseismic’;

2. scen_dir. This is the directory in which all the information for the scenario is
expected to be located. E.g.:

scen_dir = [scen_name];

3. data_file. This is the file in which all datasets for the scenario are listed. E.g.:

data_file = [scen_dir,’Nias_data_input_file’];

4. scen_parameters_file. This is the file in which all the scenario parameters are
set. E.g.:

47

48 CHAPTER 7. COMPREHENSIVE GUIDE TO OPTIONS

scen_parameters_file = [scen_dir,’scen_parameters’];

5. center_parameters_file. This is the file in which all parameters are set for the
centering step of the algorithm. E.g.:

center_parameters_file = [scen_dir,’center_parameters’];

6. decomposition_parameters_file. This is the file in which all parameters are set
for the decomposition step of the algorithm. E.g.:

decomposition_parameters_file = [scen_dir,’decomposition_parameters’];

7. model_parameters_file. This is the file in which all parameters are set for the
fault model step of the algorithm. E.g.:

model_parameters_file = [scen_dir,’model_parameters’];

8. inversion_parameters_file. This is the file in which all parameters are set for
the inversion step of the algorithm. E.g.:

inversion_parameters_file = [scen_dir,’inversion_parameters’];

7.2 data file

The format and valid input for data_file is located in Section 8.1.1.

7.3 scen parameters file

There are 6-7 variables to be set within scen_parameters_file. The examples are from
the Nias 2005 Postseismic scenario.

1. first_epoch. This is the first epoch during which data is to be allowed, inclusive.
E.g. to only import data with epoch of 1 or afterward the user would write:

first_epoch = 1;

2. last_epoch. This is the last epoch during which data is to be allowed, inclusive.
E.g. to only import data with epoch of 450 or before the user would write:

7.3. SCEN PARAMETERS FILE 49

last_epoch = 450;

3. time_unit. This is the time unit to be used internally by MATLAB. Valid time
units are listed in Table 8.2 E.g. to tell MATLAB to use days as the internal time
unit, the user would write:

time_unit = ’day’;

4. sig_time. This is the number of significant digits after the decimal place assumed
MATLAB for comparing epochs. This should be an integer. E.g. to tell MATLAB
to use three digits after the decimal point to compare epochs, the user would write:

sig_time = 3;

5. observation_unit. This is the distance unit to be used internally by MATLAB.
Valid distance units are listed in Table 8.2 E.g. to tell MATLAB to use centimeters
as the internal distance unit, the user would write:

observation_unit = ’cm’;

6. sparse_types. This is a cell array containing strings corresponding to the sparse
data sources. E.g. to tell MATLAB to use InSAR data as sparse data, the user
would write:

sparse_types = {’InSAR’};

7. X_rescale. This is an optional cell array that contains rescaling factors for each
datasets. These rescaling factors can take one of two forms for each dataset. The first
form is a real constant (e.g. 7.235) that rescales all the data in the corresponding
dataset by that constant. This is primarily used to adjust the weight imposed
during the inversion on one or both datasets. For example, if we wish to decrease
the weight on an InSAR dataset by a factor of 10, we could change its entry in
X_rescale from 1 to 0.1. The second usage of X_rescale is when, for some k,
size(X_rescale{k}) == size(X_dat{k}). In this case, for all valid i, j, we rescale
X_weight{k}(i,j) by X_rescale{k}(i,j). A final possible value (which is also
the default) for X_rescale is the empty cell .

For example, we we had two datasets, the first is a short GPS time series consisting
of 3 time-series over 10 epochs and the second is a large set of InSAR images, then
all of the following would be valid assignments of X_rescale:

50 CHAPTER 7. COMPREHENSIVE GUIDE TO OPTIONS

• X_rescale = {}. This gives both datasets their original weight.

• X_rescale = {1,1}. This gives both datasets their original weight.

• X_rescale = {1,1}. This gives both datasets their original weight.

• X_rescale = {2,0.5}. This gives the GPS time-series twice the normal weight
and the InSAR images half the usual weight.

• X_rescale = {[1,1,1,1;1,1,1,1;0,1,1,1],1}. This gives both datasets
their original weight except for the first epoch of the last time-series for the
GPS dataset, which is rescaled to having zero weight.

7.4 center parameters file

Currently there are 2 methods of centering, basic and advanced. As these have different
options, we deal with them separately. The user specifies which type of centering to
use through the definition of the variable center_function, which can either take the
value basic or advanced. In practice, we string compare against ’basic’, so any string
other than basic (e.g. non-basic, advanced, moose, etc.) for this variable will use the
advanced method of centering.

The variable to set to determine this choice is center_function. E.g.

center_function = ’advanced’;

7.4.1 basic centering

Basic centering finds and subtracts the weighted mean from all dense time-series.
No options are used, so no more variables need to be defined.

7.4.2 advanced centering

Advanced centering uses the CG algorithm to find a local minimum of the mean values for
each dense time-series with a n_comp_mean component model. The user must also specify
mean_function, the function to-be-used for determining the mean; and mean_options,
the options for the mean function to use. As these options depend on the mean_function,
we will define them in Section 7.4.2.1. E.g.

mean_function = ’decomp_CG_means’;

n_comp_mean = 1;

7.4. CENTER PARAMETERS FILE 51

7.4.2.1 decomp CG means

For the advanced centering function decomp_CG_means, which is currently the only ad-
vanced centering algorithm, the mean options must include 12 arguments:

1. The string ’func’ followed by the name of an .m-file that computes the objective
function the user wishes to minimize. E.g.:

func = ’func_mean_zero_sum_V_transform_corrected’;

2. The string ’dfunc’ followed by the name of an .m-file that computes the gradient
of objective function the user wishes to minimize.

dfunc = ’dfunc_mean_zero_sum_V_transform_corrected’;

3. The string ’iter_max’ followed by a positive integer gives the number of itera-
tions the CG algorithm goes through before stopping unless convergence is reached
earlier.

iter_max = 10^5;

4. The string ’tol’ followed by a positive double gives the maximum function differ-
ence between two iterations of the CG algorithm such that convergence is assumed
to be achieved.

tol = 10^(-7);

5. The string ’func_options’ followed by a cell array (definitions of each entry to
be found in Section 10) that contains the options for the function func.

func_options = {...

X_dat,... 1

X_weight,... 2

u_index,... 3

v_index,... 4

n_datasets,... 5

means_index,...6

v_end_entry,...7

v_index_size,...8

52 CHAPTER 7. COMPREHENSIVE GUIDE TO OPTIONS

n_epochs,... 9

n_comp_mean,... 10

transformation_matrix_inv,... 11

v_index_in_x... 12

};

Note that the numbers after the three dots are comments denoting the cell number.

6. The string ’dfunc_options’ followed by a cell array (definitions of each entry to
be found in Section 10) that contains the options for the function dfunc.

dfunc_options = {...

X_dat,... 1

X_weight,... 2

u_index,... 3

v_index,... 4

n_datasets,... 5

means_index,... 6

v_end_entry,... 7

v_index_size,...8

X_row,... 9

n_comp_mean,...10

n_tseries,... 11

n_epochs,... 12

X_time_index,...13

transformation_matrix,... 14

transformation_matrix_inv,...15

v_index_in_x,...16

};

Note that the numbers after the three dots are comments denoting the cell number.

mean_options as a whole is thus given by:

mean_options = {...

’func’,func,...

’dfunc’,dfunc,...

’iter_max’,iter_max,...

’tol’,tol,...

7.5. DECOMPOSITION PARAMETERS FILE 53

’func_options’,func_options,...

’dfunc_options’,dfunc_options ...

};

7.5 decomposition parameters file

The 3 variables that need to be defined within this script are:

1. n_comp. This is the number of linear components to be used in the decomposition.
It should be a positive integer.

n_comp = 2;

2. decomp_fcn. This is the function that will be used for the decomposition. The two
options are decomp_srebro_CG_simultaneous and decomp_srebro_EM, which are
described in Sections 7.5.2 and 7.5.1 respectively. E.g.:

decomp_fcn = ’decomp_srebro_CG_simultaneous’;

3. decomp_options. This is a cell object whose entries depend on the decomp_fcn, so
will be dealt with in Sections 7.5.2 and 7.5.1.

7.5.1 Conjugate Gradient – Simultaneous

We strongly recommend the use to use the Conjugate Gradient algorithm instead of
the Expectation Maximization algorithm because it is much faster for every case we’ve
tested. The variables in the options that need to be defined are:

1. The string ’func’ followed by the name of an .m-file that computes the objective
function the user wishes to minimize. E.g.:

func = ’func_multi_component’;

2. The string ’dfunc’ followed by the name of an .m-file that computes the gradient
of objective function the user wishes to minimize.

dfunc = ’dfunc_multi_component’;

54 CHAPTER 7. COMPREHENSIVE GUIDE TO OPTIONS

3. The string ’iter_max’ followed by a positive integer gives the number of itera-
tions the CG algorithm goes through before stopping unless convergence is reached
earlier.

iter_max = 10^5;

4. The string ’tol’ followed by a positive double gives the maximum function differ-
ence between two iterations of the CG algorithm such that convergence is assumed
to be achieved.

tol = 10^(-7);

5. The string ’func_options’ followed by a cell array (definitions of each entry to
be found in Section 10) that contains the options for the function func.

func_options = {...

X_dat,... 1

X_weight,... 2

u_index,... 3

v_index,... 4

n_datasets...5

};

Note that the numbers after the three dots are comments denoting the cell number.

6. The string ’dfunc_options’ followed by a cell array (definitions of each entry to
be found in Section 10) that contains the options for the function dfunc.

dfunc_options = {...

X_dat,... 1

X_weight,... 2

u_index,... 3

v_index,... 4

n_datasets,... 5

X_row,... 6

n_comp,... 7

n_tseries,... 8

n_epochs,... 9

7.5. DECOMPOSITION PARAMETERS FILE 55

X_time_index...10

};

Note that the numbers after the three dots are comments denoting the cell number.

decomp_options for the CG algorithm is given by:

decomp_options = {...

’func’,func,...

’dfunc’,dfunc,...

’iter_max’,iter_max,...

’tol’,tol,...

’func_options’,func_options,...

’dfunc_options’,dfunc_options ...

};

1.

7.5.2 Expectation Maximization

We strongly recommend the use to use the Conjugate Gradient algorithm instead of
the Expectation Maximization algorithm because it is much faster for every case we’ve
tested.

The 4 inputs that need to be defined within decomp_options are:

1. ’tol’,tol, that is, the string ’tol’ followed by the tolerance for the linear de-
composition function. E.g.:

tol = 10^(-12);

2. ’max_iter’,max_iter, that is, the string ’max_iter’ followed by the maximum
number of iterations for the EM algorithm. E.g.:

max_iter = 5*10^4;

E.g.:

decomp_options = {’tol’,tol,’max_iter’,max_iter};

56 CHAPTER 7. COMPREHENSIVE GUIDE TO OPTIONS

7.6 model parameters file

This script is the most maleable set of options in the code. Three classes of options are
avaliable for this script:

1. Building a fault model

2. Determination of Laplacian/regularization terms

3. Green’s functions

All of these options need to be put into a single cell array get_fault_model_options

separated by commas.

7.6.1 Fault Model

The user must either provide a list of points from which to build a point-source fault
model using the internal algorithms described in Section 2.6, or the user must give a file
of fault elements (described in Section 8.2) and tell the program if the fault elements are
rectangular.

• The user must either enter the string ’BuildFaultModel’ followed by the cell
fault_model_parameters_constrct XOR ’LoadFaultModel’ followed by load_
fault_model_file. The format for load_fault_model_file is given in Section
8.2.1 and is different for rectangular and point source fault elements. For building
the fault model, fault_model_parameters_constrct has 10 entries, examples of
which are below:

’Bhuj 2001 Postseismic/faultmodel/fault_points.par’,... %input_file

82 ... % strike angle = fault_model_parameters{2};

’Bhuj 2001 Postseismic/faultmodel/bhuj_fault_model.trg’...%outputfile_pcaim

’Bhuj 2001 Postseismic/faultmodel/dislo.trg’...%outputfile_okada

10^1 ...%smooth_param = fault_model_parameters{5};

10 ...%nx = fault_model_parameters{6};

10 ...%ny = fault_model_parameters{7};

200 ...%ang_tect = fault_model_parameters{8};

’v4’ ...%interp_method = fault_model_parameters{9};

3 ... %N_nearest = fault_model_parameters{10};

input_file is the relative path to a list of points in the local coordinates in the
format from Section 8.2.3, the strike angle is an approximately average strike

7.6. MODEL PARAMETERS FILE 57

angle for the fault surface the user wishes to build (for the purposes of resam-
pling axes), the outputfile_pcaim is the output file for PCAIM to use inter-
nally, outputfile_okada is the output file for the Fortran Okada scripts to use,
smooth_param is the weight of the smoothing parameter, nx and ny are the approx-
imate number of patches to be made along the strike-slip and dip-slip directions
respectively, ang_tect is the approximate overall tectonic angle, interp_method is
the interpolation method used by the resampling algorithm, and N_nearest is the
number of nearest neighbors to sample for construction of the discrete Laplacian
for smoothing the fault surface.

• The user must enter the string ’Origin’ followed by origin_file, whose format
is given in Section 8.2.2.

• If the fault is composed of rectangular elements, the user must enter the string
’RectangleFault’

• The user must also include the string ’tect_vect’ followed by a three vector
that describes the overall tectonic motion for the area. This is used in the rake
calculations.

7.6.2 Laplacian/Regularization

Thse user must either provide a set of parameters defining how to compute the Lapla-
cian (format given in the follow paragraphs) or a file in which a Laplacian (or other
regularlization matrix) is located. The format for this latter file is in Section 8.2.4.

In order to load in a Laplacian, we need to have ’BuildLaplacian’,laplacian_

options in our get_fault_model_options, or we need to have ’LoadLaplacian’,laplacian_
file there. laplacian_file is the path to a file containing the Laplacian to-be-used.
laplacian_options is more complicated and the elements of this cell array are listed
below.

• ’n_neighbours’,n_neighbors. This option tells the Laplacian how many neigh-
boring points (an integer) to use in its approximation of the Laplacian. We recom-
mend somewhere between 4 and 10. Try various numbers and see how the results
change.

• ’no_slip_points’, no_slip_points . This option specifies a number of fault
elements (integers in a vector) that have heavy penalties applied to any slip on
them. This is useful for forcing slip to go to zero at the fault boundaries. This
option overrides ’free_surface_depth’.

58 CHAPTER 7. COMPREHENSIVE GUIDE TO OPTIONS

• ’free_surface_depth’, free_surface_depth. This option gives a depth such
that:

1. For any patch whose center is above free_surface_depth, there are no penal-
ties on slip and the standard Laplacian is used.

2. For any patch who center is below free_surface_depth, slip is heavily pe-
nalized.

This option is overridden by ’no_slip_points’.

• ’projected’. This string should be included if the user wants the algorithm to
guess the edge patches (on which slip should be reduced to zero) on the fault using
a slight modification of the MATLAB convex hull algorithm.

• ’scaling_edge_factor’, scaling_edge_factor is the multiplicative factor (dou-
ble) of a standard distance between patches that is used to guess whether a given
patch is on the edge or not.

• ’strike_angle’, strike. This option gives the strike angle for each patch.

• ’dip_angle’, dip. This option gives the dip angle for each patch.

7.6.3 Green’s Functions

The user can either build or load the Green’s functions for the inversion routine. If the
Green’s functions are to be loaded, the user should follow the formatting description in
Section 8.2.6. If the Green’s functions are to be constructed, the user must provide the
system-readable path of the Green’s function Fortran binaries, and include in get_fault_

model_options the three options ’BuildGreensFunction’, all_position, GreensExternalFcnDir

in that exact order. Note that all_position has been defined in earlier calculations.

7.7 inversion parameters file

There are only two required variables in inversion_parameters_file, lap_weight and
invert_options.

lap_weight is the linear weight applied to the Laplacian in order to change the
strength of the regularization term in the inversion (Sections 2.6.2, 2.7.1).

As with all the other options sets, invert_options can contain a number of options
to describe how to perform the inversion, or it can be left blank to use the default options.

7.8. PLOTTING COMMANDS FILE 59

• ’Positivity’. This option forces positive slip at depth with one component.

• ’Fixed Rake’, rake. This option forces slip on every patch to lie in the one-
dimensional subspace defined by rake (the rake angle) for that patch.

• ’PseudoInverse’. This option makes the inversion algorithm use the pseudo inver-
sion (A_inv = pinv(A); s = A_inv * d;) instead of MATLAB’s build-in back-
slash operator as the default(s = A\d ;).

• ’SparseConstraint’, SparseConstraint. This option is used to include an In-
SAR image (or other sparse constraint matrix constructed in project_all_greens_

fcn) in the inversion. See Section 2.7.2 for details.

• ’SparseWeight’, SparseWeight. This option allows the user to change the weight
the sparse constraint has compared to every other datasource.

• ’Sparse_d’, Sparse_d. This option allows the input of the sparse data vector
that complements the SparseConstraint during the inversion. See Section 2.7.2
for details.

• ’NoSmoothing’. This option removes the regularization via the Laplacian. This
option may not work unless ’PseudoInverse’ is also used.

7.8 plotting commands file

This file is not as well-documented or structured because it is assumed the user will
heavily customize the plotting functions to the user’s own purposes and aesthetic desires.

The variables that may usefully be defined for many of the plotting functions are:

1. coast_file_name, which is the path to a MATLAB-readable coast file
(e.g. ’Nias 2005 Postseismic/Nias_Coast.dat’).

2. AZ,EL, which are the azimuth and elevation of the 3D viewing angle.

Chapter 8

File Conventions

8.1 Data Input

8.1.1 List of Data Inputs

For each dataset the user must list the dataset information file in which to find more
information about the dataset. Format for each type of data in the following subsections.
Each data source will be in some directory <data_root> that is set by the user.

Default Location:<data_root>/<scenario_name>_data_input_file
Format: No header. Must be 5 columns. Vertical bar “|” separated columns. Leading

and trailing white space on the entries will be removed.
(1) (2) (3) (4) (5)

Name (1) | Type (1) | Path (1) | Time Unit (1) | Distance Unit (1)
Name (2) | Type (2) | Path (2) | Time Unit (2) | Distance Unit (2)

...
...

...
Name (M) | Type (M) | Path (M) | Time Unit (M) | Distance Unit (M)

In the preceding table, M is the number of data sets to be loaded, Name is the
colloquial name of the dataset, Type is one of the acceptable data types (Table 8.1),
Path is the absolute path or relative path to the information file for that dataset,Time
Unit is one of the value time units (Table 8.2), and Distance Unit is one of the valid
distance units (Table 8.2).

Example:

Nias 2005 GPS Postseismic | cGPS3 | Nias 2005 Postseismic/Nias_cGPS3_stations.dat | day | cm

61

62 CHAPTER 8. FILE CONVENTIONS

Data Types
cGPS3
cGPS2
InSAR

Table 8.1: Acceptable data types for List of Data Inputs from Section 8.1.1.

.

Time Unit Time Code
decimal years yr

decimal months month
decimal days day
decimal hours hour

decimal minutes min
decimal seconds sec

Length Unit Length Code
decimal meters m

decimal centimeters cm
decimal milimeters mm

Table 8.2: Acceptable units for List of Data Inputs from Section 8.1.1.

8.1.2 Dataset information File – cGPS3

For each cGPS3 station, the user must give the path to the specific data file. Format for
cGPS3 data files is in section 8.1.2.1.

Default Location:<data_root>/<scenario_name>_cGPS3_stations.dat
Format: No header. Must be 4 columns. Vertical bar “|” separated columns. Leading

and trailing white space on the entries will be removed.
(1) (2) (3) (4)

Name (1) | Path (1) | Longitude (1) | Latitude (1)
Name (2) | Path (2) | Longitude (2) | Latitude (2)

...
...

...
...

Name (M) | Path (M) | Longitude (M) | Latitude (M)
In the preceding table, M is the number of data sets to be loaded, Name is the

colloquial name of the station, Directory is the absolute path or relative path to the data
file for that station, Longitude is the longitude of the station in decimal degrees, and
Latitude is the latitude of the station in decimal degrees.

Example:1

1Longitudes/Latitudes have been truncated for readability.

8.1. DATA INPUT 63

BITI | Nias 2005 Postseismic/Nias_cGPS3_timeseries/BITI | 97.81 | 1.08

BSIM | Nias 2005 Postseismic/Nias_cGPS3_timeseries/BSIM | 96.33 | 2.41

BTHL | Nias 2005 Postseismic/Nias_cGPS3_timeseries/BTHL | 97.71 | 0.57

LEWK | Nias 2005 Postseismic/Nias_cGPS3_timeseries/LEWK | 95.80 | 2.92

LHWA | Nias 2005 Postseismic/Nias_cGPS3_timeseries/LHWA | 97.13 | 1.38

PBAI | Nias 2005 Postseismic/Nias_cGPS3_timeseries/PBAI | 98.53 | -0.03

PBLI | Nias 2005 Postseismic/Nias_cGPS3_timeseries/PBLI | 97.41 | 2.31

PSMK | Nias 2005 Postseismic/Nias_cGPS3_timeseries/PSMK | 97.86 | -0.09

PTLO | Nias 2005 Postseismic/Nias_cGPS3_timeseries/PTLO | 98.28 | -0.05

SAMP | Nias 2005 Postseismic/Nias_cGPS3_timeseries/SAMP | 98.71 | 3.62

8.1.2.1 Data File – cGPS3

Default Location: <data_root>/<scenario_name>_cGPS3_timeseries/<station_name>,
where <station_name> is the name of a given station. For example, the station MKMK in
the SuGAR network in a Nias scenario should be located at <data_root>/Nias_cGPS3_
timeseries/MKMK. If the user has multiple cGPS3 datasets for this scenario, append a
short string of characters to identify each (e.g. add SuGAR if they are SuGAR network
stations, IRD if the stations belong to the IRD, etc.)

Format: No header. Must be 7 columns. White space separated columns.
(1) (2) (3) (4) (5) (6) (7)

Epoch(1) dE(1) dN(1) dU(1) σE(1) σN(1) σU(1)
Epoch(2) dE(2) dN(2) dU(2) σE(2) σN(2) σU(2)

...
...

...
...

...
...

...
Epoch(M) dE(M) dN(M) dU(M) σE(M) σN(M) σU(M)

In the preceding table, M is the number of cGPS3 stations from this dataset to be
loaded, Epoch is epoch of the measurement, dE is the displacement in the East direction,
dN is the displacement in the North direction, dU is the displacement in the Up direction,
σE is 1-σ uncertainty on dE, σN is 1-σ uncertainty on dN , and σU is 1-σ uncertainty on
dU .

Example:2

1.5 -5 5 10 0.7 0.3 2.2

2.48 -5.1 4.1 10.2 1.2 0.7 3.8

3.51 -5.5 5 11.8 1 0.7 3

4.49 -5.5 4.3 10.3 0.6 0.3 1.6

9.5 -6 2.7 11.1 1.8 1.6 6.1

2From Nias 2005 Postseismic/Nias_cGPS3_timeseries/LHWA

64 CHAPTER 8. FILE CONVENTIONS

...

...

331.72 -16 -9.2 15.5 0.6 0.2 1.2

332.71 -15.5 -9.6 14.2 0.6 0.3 1.4

333.73 -15.7 -11.1 15.4 0.5 0.1 1

8.1.3 Dataset information File – cGPS2

For each cGPS2 station, the user must give the path to the specific data file. Format for
cGPS2 data files is in section 8.1.3.1.

Default Location:<data_root>/<scenario_name>_cGPS2_stations.dat
Format: No header. Must be 4 columns. Vertical bar “|” separated columns. Leading

and trailing white space on the entries will be removed.
(1) (2) (2) (4)

Name (1) | Path (1) | Longitude (1) | Latitude (1)
Name (2) | Path (2) | Longitude (2) | Latitude (2)

...
...

...
...

Name (M) | Path (M) | Longitude (M) | Latitude (M)
In the preceding table, M is the number of data sets to be loaded, Name is the

colloquial name of the station, Directory is the absolute path or relative path to the data
file for that station, Longitude is the longitude of the station in decimal degrees, and
Latitude is the latitude of the station in decimal degrees.

Example:

BHUJ | Bhuj 2001 Postseismic/Bhuj_cGPS2_timeseries/BHUJ | 69.65 | 23.25

BIRN | Bhuj 2001 Postseismic/Bhuj_cGPS2_timeseries/BIRN | 69.71 | 23.66

DHAM | Bhuj 2001 Postseismic/Bhuj_cGPS2_timeseries/DHAM | 70.14 | 23.33

GAND | Bhuj 2001 Postseismic/Bhuj_cGPS2_timeseries/GAND | 70.10 | 23.07

HAJP | Bhuj 2001 Postseismic/Bhuj_cGPS2_timeseries/HAJP | 69.21 | 23.69

LODA | Bhuj 2001 Postseismic/Bhuj_cGPS2_timeseries/LODA | 69.89 | 23.39

MAND | Bhuj 2001 Postseismic/Bhuj_cGPS2_timeseries/MAND | 69.35 | 22.83

NAKA | Bhuj 2001 Postseismic/Bhuj_cGPS2_timeseries/NAKA | 69.29 | 23.36

NALI | Bhuj 2001 Postseismic/Bhuj_cGPS2_timeseries/NALI | 68.84 | 23.26

NARA | Bhuj 2001 Postseismic/Bhuj_cGPS2_timeseries/NARA | 68.54 | 23.68

RAJK | Bhuj 2001 Postseismic/Bhuj_cGPS2_timeseries/RAJK | 70.74 | 22.29

RAPR | Bhuj 2001 Postseismic/Bhuj_cGPS2_timeseries/RAPR | 70.64 | 23.57

RATN | Bhuj 2001 Postseismic/Bhuj_cGPS2_timeseries/RATN | 70.36 | 23.86

8.1. DATA INPUT 65

8.1.3.1 Data File – cGPS2

Default Location: <data_root>/<scenario_name>_cGPS2_timeseries/<station_name>,
where <station_name> is the name of a given station. For example, the station RATN
from [CBR+09] should be located at <data_root>/Bhuj_cGPS2_timeseries/RATN. If
the user has multiple cGPS2 datasets for this scenario, append a short string of charac-
ters to identify each (e.g. add SuGAR if they are SuGAR network stations, IRD if the
stations belong to the IRD, etc.)

Format: No header. Must be 5 columns. White space separated columns.
(1) (2) (2) (4) (5)

Epoch(1) dE(1) dN(1) σE(1) σN(1)
Epoch(2) dE(2) dN(2) σE(2) σN(2)

...
...

...
...

...
Epoch(M) dE(M) dN(M) σE(M) σN(M)

In the preceding table, M is the number of cGPS2 stations from this dataset to be
loaded, Epoch is epoch of the measurement, dE is the displacement in the East direction,
dN is the displacement in the North direction, σE is 1-σ uncertainty on dE, and σN is
1-σ uncertainty on dN .

Example:3

87.66 -1.79 -1.91 1.2 2.4

259.33 -5.02 -6.17 1.8 4.1

379.86 -6.25 -7.79 1.8 4.6

606.32 -7.84 -9.88 1.1 3.1

2165.9 -12.29 -15.74 2.1 3.9

8.1.4 Dataset information File – InSAR

For each InSAR image, the user must give the path to the specific data file. Format for
InSAR data files is in section 8.1.4.1. Format for InSAR LOS files is in section 8.1.4.2.

Default Location:<data_root>/<scenario_name>_InSAR.dat
Format: No header. Must be 4 columns. Vertical bar “|” separated columns. Leading

and trailing white space on the entries will be removed.

3From Bhuj 2001 Postseismic/Bhuj_cGPS2_timeseries/RATN

66 CHAPTER 8. FILE CONVENTIONS

(1) (2) (3) (4)
Name (1) | Data Path (1) | LOS Path (1) | Epochs (1)
Name (2) | Data Path (2) | LOS Path (2) | Epochs (2)

...
...

...
...

Name (M) | Data Path (M) | LOS Path (M) | Epochs (M)
In the preceding table, M is the number of data sets to be loaded, Name is the

colloquial name of the image, Data Path is the absolute path or relative path to the
data for that image, LOS Path is the absolute path or relative path to the LOS file for
that image, and Epochs is the first scene acquisition epoch followed by a space then the
second scene acquisition epoch.

Example:4

ALOS | Pisco 2007/Pisco_InSAR/ALOS | Pisco 2007/Pisco_InSAR/losALOS | 2007.677 2008.41

8.1.4.1 Data File – InSAR Data

Default Location: <data_root>/<scenario_name>_InSAR/<image_name>.data, where
<image_name> is the name of a given station. If there are multiple InSAR datasets for
this scenario (for example, the InSAR images are separated based on source), append a
short string of characters to identify each folder.

Format: No header. Must be 3 or 4 columns. If 3 columns the standard error is
assumed to be the same on all measurements. White space separated columns.

(1) (2) (3) (4)
Longitude (1) Latitude(1) d(1) σ(1)
Longitude(2) Latitude(2) d(2) σ(2)

...
...

...
...

Longitude(M) Latitude(M) d(M) σ(M)
In the preceding table, M is the number of InSAR stations from this dataset to be

loaded, Epoch is epoch of the measurement, Longitude is the longitude of the pixel,
Latitude is the latitude of the pixel, d is the displacement along the LOS direction, and
σ is 1-σ uncertainty on d.

Example:

100 1 -3.4 1

100.1 1 -3.4 1

100.2 1 -3.4 1

100 1.1 -3.4 1

4Longitudes/Latitudes have been truncated for readability.

8.2. FAULT MODELS 67

100.1 1.1 -3.5 1

100.2 1.1 -3.7 1

100 1.2 -3.5 1

100.1 1.2 -3.7 1

100.2 1.2 -3.9 1

8.1.4.2 Data File – InSAR LOS

Default Location: <data_root>/<scenario_name>_InSAR/<image_name>.los, where
<image_name> is the name of a given station.

Format: No header. Must be 3 columns. White space separated columns.
(1) (2) (3)

E(1) N(1) U(1)
E(2) N(2) U(2)

...
...

...
E(M) N(M) U(M)

In the preceding table, M is the number of InSAR stations from this dataset to be
loaded, E is the Eastward projection of the LOS vector, N is the Northward projection of
the LOS vector, and U is the Vertical (up defined to be positive) projection of the LOS
vector. Note that the Euclidean length of the vector [E, N, U] should always be 1.

Example:

0.89047 0.3729 0.26079

0.2681 0.70068 0.66118

0.28288 0.93861 0.19744

0.73123 0.013062 0.68201

8.2 Fault Models

8.2.1 Patches

8.2.1.1 Rectangular Patches

Default Location: <data_root>/<scenario_name>_fault/fault.rect.
Format: No header. Must be 7 columns. White space separated columns.

68 CHAPTER 8. FILE CONVENTIONS

(1) (2) (3)
E(1) N(1) U(1) Strike (1), Dip (1) Length (1) Width (1)
E(2) N(2) U(2) Strike (2), Dip (2) Length (2) Width (2)

...
...

...
...

...
...

...
E(M) N(M) U(M) Strike (M), Dip (M) Length (M) Width (M)

In the preceding table, M is the number of InSAR stations from this dataset to be
loaded, E(i) is the east position of the center of the ith patch in the local coordinate
frame, N(i) is the north position of the center of the ith patch in the local coordinate
frame, U(i) is the depth of the ith patch in the local coordinate frame (beneath the
surface is positive), Strike(i) is the strike angle of the ith patch, Dip(i) is the dip angle
of the ith patch, Length(i) is the length of the ith patch along strike, Width(i) is the
width of the ith patch along dip.

Example:5

83.3603 -292.5633 9.7608 327.5937 9.9992 24.9685 18.2791

98.1062 -282.2383 12.9347 327.5927 9.9991 24.9681 18.2793

112.8523 -271.9132 16.1086 327.5917 9.9990 24.9677 18.2795

8.2.1.2 Point Source/Triangular Patches

Default Location: <data_root>/<scenario_name>_fault/fault.rect.
Format: No header. Must be 15 columns. White space separated columns.

(1) (2) (3) (4) (5) (6) (7-15)
E(1) N(1) U(1) Strike (1), Dip (1) Area (1) Vertices (1)
E(2) N(2) U(2) Strike (2), Dip (2) Area (2) Vertices (2)

...
...

...
...

...
...

...
E(M) N(M) U(M) Strike (M), Dip (M) Area (M) Vertices (M)

In the preceding table, M is the number of InSAR stations from this dataset to be
loaded, E(i) is the east position of the center of the ith patch in the local coordinate
frame, N(i) is the north position of the center of the ith patch in the local coordinate
frame, U(i) is the depth of the ith patch in the local coordinate frame (beneath the
surface is positive), Strike(i) is the strike angle of the ith patch, Dip(i) is the dip angle
of the ith patch, Area(i) is the area of the ith patch, and Vertices (i) are the vertices
of the local triangular elements in the order (x, y, z) in order of increasing depth. If two
points have the same depth, then the one with less distance along the strike is listed first
(e.g. the Southern most point if a fault has a strike angle of 0).

5From Nias_fault_description_LATLON_ORG1.8N96.6E.dat

8.2. FAULT MODELS 69

Example (first 6 columns):6

5.6104 1.8081 5.1734 257.1143 53.8047 3.3068

6.5971 2.3625 4.7394 256.9257 53.6227 3.2926

4.1781 11.9993 -8.3346 255.7129 52.2788 3.1918

Example (last 9 columns):

7.7556 1.6939 5.9793 4.4519 2.4767 3.9297 4.6238 1.2537 5.6112

7.5837 2.9168 4.3094 4.4519 2.4767 3.9297 7.7556 1.6939 5.9793

6.2087 12.7003 -8.5651 3.0769 12.2602 -9.0129 3.2488 11.0372 -7.4259

8.2.2 Origin

This file contains the pre-defined origin for the fault model.
Default Location:<data_root>/<scenario_name>_cGPS2_stations.dat
Format: No header. Must be 2 columns and 1 row. White space separated columns.

Leading and trailing white space on the entries will be removed.
(1) (2)

Longitude Latitude
In the preceding table, Longitude is the longitude of the local coordinate system origin

in decimal degrees, and Latitude is the latitude of the local coordinate system origin in
decimal degrees.

Example:

96.6 1.8

8.2.3 Points for Fault Building

Default Location: <data_root>/<scenario_name>_fault/initial_points.par.
Format: No header. Must be 3 columns. White space separated columns.

(1) (2) (3)
E(1) N(1) Z(1)
E(2) N(2) Z(2)

...
...

...
E(M) N(M) U(M)

In the preceding table, M is the number of InSAR stations from this dataset to be
loaded, E is the East coordinate of a point on or near the fault surface, N is the North

6From running make_fault_model on the Nias Bhuj 2001 Postseismic/faultmodel/fault_

points.par

70 CHAPTER 8. FILE CONVENTIONS

coordinate of a point on or near the fault surface, and Z is the Depth (down defined to
be positive) of a point on or near the surface.

Example:7

-3.1218791e+01 6.9216024e+00 1.0000000e-02

2.8131214e+01 1.5781335e+01 1.0000000e-02

-2.8190051e+01 -1.5227328e+01 3.0810000e+01

3.1249082e+01 -7.4752676e+00 3.0810000e+01

8.2.4 Laplacian

Default Location: <data_root>/<scenario_name>_fault/lap.
Format: No header. Must have exactly as many columns and rows as patches in

the fault. Must be an ascii matrix. If the matrix is designated Lap, then it must obey
Lap(i, :) · l =estimate of the Laplacian at patch i for slip distribution l.

Example: Suppose we have a square fault divided into nine patches arranged on an
integer lattice and patches are labeled 1 4 7

2 5 8
3 6 9

 ,

and slip is assumed to be zero outside of the nine patches. Then a valid Laplacian file for
a second-order estimate of the discrete Laplacian would be:

-4 1 0 1 0 0 0 0 0

1 -4 1 0 1 0 0 0 0

0 1 -4 0 0 1 0 0 0

1 0 0 -4 1 0 1 0 0

0 1 0 1 -4 1 0 1 0

0 0 1 0 1 -4 0 0 1

0 0 0 1 0 0 -4 1 0

0 0 0 0 1 0 1 -4 1

0 0 0 0 0 1 0 1 -4

8.2.5 Green’s Functions – Already Projected

Default Location: <data_root>/<scenario_name>_fault/greensfcn.

7From fault_points.par for Bhuj.

8.2. FAULT MODELS 71

Format: No header. Must have exactly as many columns as patches in the fault, and
exactly as many rows as time-series. Must be an ascii matrix. If the matrix is designated
G, then it must obey G(i, :) · l =displacement of time series i for slip distribution l. l must
be of the form [ss1; ss2; · · · ssN ; ds1; ds1; · · · dsN], where ssj is the strike-slip component
of slip on the jth patch and dsj is the dip-slip component of slip on the jth patch.

Example: If we have four points on the surface and one dislocation at depth (e.g.
the example used for GREENFUNC), a possible set of Green’s functions for a cGPS2
dataset is

0 0.0003741

-5.796e-05 0

0 0.0001968

-4.159e-05 0

0 0.000577

-0.0001362 0

-0.001089 0.0001124

0.0009522 1.391e-05

Note that already projected Green’s functions will need to bypass the projection step
of project_all_greens_fcn function call after get_fault_model.

8.2.6 Green’s Functions – Not Projected

Default Location: <data_root>/<scenario_name>_fault/greensfcn.
Format: No header. Must have exactly as many columns as patches in the fault, and

must have three times as many rows as distinct observation points on the surface. Must
be an ascii matrix. If the matrix is designated G, then it must obey G(3∗(i−1)+1, :)·l =E
displacement of observation location i for slip distribution l, G(3 ∗ (i − 1) + 2, :) · l =N
displacement of observation location i for slip distribution l, and G(3 ∗ (i − 1) + 3, :
) · l =U displacement of observation location i for slip distribution l. l must be of the
form [ss1; ss2; · · · ssN ; ds1; ds1; · · · dsN], where ssj is the strike-slip component of slip on
the jth patch and dsj is the dip-slip component of slip on the jth patch.

Example: If we have four points on the surface and one dislocation at depth (e.g.
the example used for GREENFUNC), a possible set of Green’s functions is

0 0.0003741

-5.796e-05 0

0 -0.001187

0 0.0001968

72 CHAPTER 8. FILE CONVENTIONS

-4.159e-05 0

0 -0.0009161

0 0.000577

-0.0001362 0

0 -0.001275

-0.001089 0.0001124

0.0009522 1.391e-05

-3.799e-05 0.0004727

Chapter 9

.m-Files

In this chapter we give detailed descriptions of the main .m files used in the PCAIM
package, their inputs, outputs and a general sense of what they do. This chapter is
mostly complete but the descriptions of the functions is somewhat lacking compared to
an ideal manual. This will be improved in future editions of the manual. Also note that
some of the more recent functions have not been included.

This chapter is broken up into five sections:

1. Data Loading/Conventions

2. Data Processing

3. Decompositions

4. Inversions

5. Plotting

73

74 CHAPTER 9. .M-FILES

9.1 Data/Conventions Loading

These scripts load data or set conventions for the rest of the package.

9.1. DATA/CONVENTIONS LOADING 75

m-File Summary for PCAIM_driver.m
File Name: PCAIM_driver.m File Type: script
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: PCAIM driver is a self-contained driver file that runs all the scripts

necessary to:

1. load multiple datasets with different sampling epochs

2. center the (temporally) dense data, decompose the dense data
into linear components

3. create or load a source model/Greens, functions/Laplacian for
the source model

4. invert both dense and sparse for dislocations in the source
model

See also set paths, load scenario information Nias,
load preferences, load all data, weight calc,
create timeline, separate sparse data, center data,
decomp data, get fault model, invert components,
optimize offsets final, create predictions, plot model,
model statistics.

Variables
• scenario_name is a string denoting the directory in which the models are to be saved
and data is to be found.
• time_unit is a string denoting what time unit (e.g. ‘year’, ‘day’) will be used as

fundamental to the analysis. All time data will be converted into this unit.
• sig_time is an integer denoting the number of significant digits after the decimal

point to be used to determine if two epochs are the same or not during epoch comparison.
This is necessary as number of significant figures for the input times are generally not
identical across multiple sources.
• length_unit is a string denoting what length unit (e.g. ‘mm’, ‘cm’) will be used as

fundamental to the analysis. All length data and errors will be converted into this unit.
• X_dat is a cell-structure where each cell contains a matrix of the imported data

file:PCAIM_driver.m
file:PCAIM_driver.m

76 CHAPTER 9. .M-FILES

from a different data source (cGPS3, cGPS2, InSAR, etc.). Each row is one “station”
(e.g. for cGPS3) or “location” (e.g. each pixel for InSAR data), and each column is the
epoch for each station in that cell.
• X_err is a cell-structure where each cell contains a matrix of the imported 1-σ error

estimates for each data point from a different data source (cGPS3, cGPS2, InSAR, etc.).
• X_weight is a cell-structure where each cell contains a matrix of the imposed mul-

tiplicative modifications to the weight of each data point from a different data source
(cGPS3, cGPS2, InSAR, etc.). These imposed modifications allow the user to manually
reweight portions of the data which his/her geophysical intuition suggests are being either
over or under fit. Note this manual reweighting will nearly always worsen the resulting
χ2 of the decomposition. You can think of this as a “fudge factor” for the decomposition
and inversion.
• X_time is a cell-structure where each cell contains a vector of the imported epochs

from a different data source (cGPS3, cGPS2, InSAR, etc.). The jth entry of the vector
in the kth cell corresponds to the jth column of the kth cell of X_err and X_dat.
• stn_name is a cell-structure where each cell contains a cell structure of strings of

the names of the stations in X_dat for data types that have station names. In particular,
the ith cell of the kth cell in stn_name corresponds to the ith row of the kth cell of X_err
and X_dat.
• data_type is a cell-structure where the kth cell contains a string denoting the type

of data (e.g. ‘cGPS3’) in the kth cell of X_dat.
• input_list_file is a string containing the absolute path of the file containing a

list of information on all the data input sources for this scenario.
• cGPS3_stations is a cell structure of strings listing the allowed stations. Case

sensitive.
• first_epoch is a scalar denoting the first allowed epoch in the timeseries.
• last_epoch is a scalar denoting the last allowed epoch in the timeseries.
• timeline is a vector where the jth entry is the jth unique epoch in chronologically

order from any of the data sources.
• X_time_index is a cell structure where the kth cell is an index to X_time from

timeline. In other words, the kth cell is vector of the same size as the kth cell of X_time
such that timeline(X_time_index{k}{j})=X_time{k}{j}.
• n_comp is a positive integer specifying the number of components for the decompo-

sition of the data matrix into linear components.
• U is a m × N matrix representing the spatial function of the linear decomposition

X ≈ USV t. The jth column is the spatial function of the jth component.
• S is a N × N diagonal matrix of the weights of the components of the linear

decomposition X ≈ USV t. The entry (j, j) is the weight of the jth component.

9.1. DATA/CONVENTIONS LOADING 77

• V is n × N matrix representing the temporal function of the linear decomposition
X ≈ USV t. The jth column is the temporal function of the jth component.
• tol is the convergence tolerance for the linear decomposition function.
• iter_max is the maximum number of iterations of the linear decomposition algo-

rithm.

78 CHAPTER 9. .M-FILES

m-File Summary for load_all_data.m
File Name: load_all_data.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: Loads all types of data into the PCAIM script. See also

PCAIM driver.

Input load_all_data(data_file,first_epoch,last_epoch,time_

unit,sig_time,observation_unit,X_time,position,X_dat,X_

err,data_info,data_type,options)

• data_file: full path of file containing dataset information locations.
• first_epoch: the earliest epoch to allow data.
• last_epoch: the latest epoch to allow data.
• time_unit: the time unit to be used internally during calculations.
• sig_time: number of significant digits after the decimal point when rounding

epochs.
• observation_unit: output observation units (m,cm,mm).
• x_time{i}: cell containing the time vector of set #i.
• position{i}: cell containing the longitude and latitude vectors of dataset i (e.g.,

the long and lat of observation points, longitude=positioni(:,1);latitude=position{i}(:,2)).
• X_dat{i}: cell containing the displacement vector of dataset i.
• X_dat{i}(k,l): observation for set i, time series k, at epoch X time{i}(l).
• X_err{i}: same as X dat, but contains the 1-sigma standard errors.
• data_info{i}: cell containing informations about dataset i. For cGPS: data info{i}{1}{j}:

name of station j within dataset i; data info{i}{2}{j}: path of gps file of station j within
dataset i. For InSAR: data info{i}{1}: name of set #i; data info{i}{2}: path to dis-
placement file (towards satellite) of dataset i; data info{i}{3}: path to los file of dataset
i.
• data_type{i}: type of data considered (e.g., cGPS3, InSAR,...).
• options: custom options to use during data input, if any.

Output [X_time,position,X_dat,X_err,data_info,data_

type] = load_all_data
• Same definitions as input variables where applicable, except they now contain the
loaded datasets from data file.

file:load_all_data.m
file:load_all_data.m

9.1. DATA/CONVENTIONS LOADING 79

m-File Summary for load_cGPS3_data.m
File Name: load_cGPS3_data.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: This function loads in 3-component continuous GPS time series from

correctly formatted data files and deposits them in the correct data
structures. It will only load stations whose names are in the cell
structure cGPS3_station_set, and it will only load data between
epochs first_valid_epoch and last_valid_epoch. The data is all
converted to the scenario unit conventions. See also load all data,
load InSAR data.

Input load_cGPS3_data(input_list,first_epoch,last_epoch,time_

unit,sig_time,observation_unit,X_time,position,X_dat,X_

err,stn_info,data_type,options)

• input_list: correctly formatted string from the data file of the previous script.
Format is: Dataset Name | Data Type | Path/To/Dataset/File | Time Unit | Length
Unit.
• first_epoch: the earliest epoch to allow data.
• last_epoch: the latest epoch to allow data.
• time_unit: the time unit to be used internally during calculations.
• sig_time: number of significant digits after the decimal point when rounding

epochs.
• observation_unit: output observation units (m,cm,mm).
• X_time{i}: cell containing the time vector of set #i.
• position{i}: cell containing the longitude and latitude vectors of dataset i (e.g.,

the long and lat of GPS stations, longitude=position{i}(:,1);latitude=position{i}(:,2)).
• X_dat{i}: cell containing the displacement vector of dataset i.
• X_dat{i}(k,l): observation for set i, time series k, at epoch X time{i}(l).
• X_err{i}: same as X dat, but contains the 1-sigma standard errors.
• data_info{i}: cell containing informations about dataset i. For cGPS: data info{i}{1}{j}:

name of station j within dataset i data info{i}{2}{j}: path of gps file of station j within
dataset i.
• data_type{i}: type of data considered (e.g., cGPS3, SAR,...).
• options: not used by cGPS3.

file:load_cGPS3_data.m
file:load_cGPS3_data.m

80 CHAPTER 9. .M-FILES

Output [X_time,position,X_dat,X_err,stn_info,data_

type] = load_cGPS3_data
• Same definitions as input variables where applicable, except they now contain the
loaded datasets from input list.

9.1. DATA/CONVENTIONS LOADING 81

m-File Summary for load_InSAR_data.m
File Name: load_InSAR_data.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: Loads InSAR images into the PCAIM program. See also

load all data, load cGPS3 data.

Input load_InSAR_data(input_list,first_epoch,last_epoch,time_

unit,sig_time,observation_unit,X_time,position,X_dat,X_

err,data_info,data_type,options)

• input_list: correctly formatted string from the data file of the previous script.
Format is: Dataset Name | Data Type | Path/To/Dataset/File | Time Unit | Length
Unit.
• first_epoch: the earliest epoch to allow data.
• last_epoch: the latest epoch to allow data.
• time_unit: the time unit to be used internally during calculations.
• sig_time: number of significant digits after the decimal point when rounding

epochs.
• observation_unit: output observation units (m,cm,mm).
• X_time{i}: cell containing the time vector of set #i.
• position{i}: cell containing the longitude and latitude vectors of dataset i (e.g.,

the long and lat of GPS stations, longitude=position{i}(:,1);latitude=position{i}(:,2)).
• X_dat{i}: cell containing the displacement vector of dataset i.
• X_dat{i}(k,l): observation for set i, time series k, at epoch X time{i}(l).
• X_err{i}: same as X dat, but contains the 1-sigma standard errors.
• data_info{i}: cell containing informations about dataset i. For cGPS: data info{i}{1}{j}:

name of station j within dataset i data info{i}{2}{j}: path of gps file of station j within
dataset i.
• data_type{i}: type of data considered (e.g., cGPS3, SAR,...).
• options: not used by cGPS3.

Output [X_time,position,X_dat,X_err,data_info,data_type]=load_

InSAR_data
• Same definitions as input variables where applicable, except they now contain the
loaded datasets from input list.

file:load_InSAR_data.m
file:load_InSAR_data.m

82 CHAPTER 9. .M-FILES

m-File Summary for load_preferences.m
File Name: load_preferences.m File Type: script
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: load preferences is the correct place to set any preferences necessary

previous to the loading data steps. For now, this is just initialization
of variables. See also PCAIM driver, set defaults.

file:load_preferences.m
file:load_preferences.m

9.1. DATA/CONVENTIONS LOADING 83

m-File Summary for read_date.m
File Name: read_date.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: read date(date,separator) parses date via the separator

character separator. Example: sample date=’2007/08/20

| 13:54:56.34’; read date(sample date,’|’). See also
load cGPS3 data, load InSAR data.

Input read_date(date,separator)

• date: a date in the format: YYYY/MM/DD <seperater> HH:MI:SS where YYYY is
the year, MM is the month, DD is the day, HH is the hour, MI is the minute, SS is the decimal
seconds (arbitrary number of digits after the first two if decimal is needed.)
• separator: a character that separates the year-month-day from the hour-minute-

second

Output date_output=read_date

• date_output: same as the input date but in decimal years.

file:read_date.m
file:read_date.m

84 CHAPTER 9. .M-FILES

m-File Summary for separate_sparse_data.m
File Name: separate_sparse_data.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: Divides the data into ”dense” and ”sparse” data.

Input separate_sparse_data(X_time_index,position,X_dat,X_err,

data_info,data_type,X_weight,sparse_list)

• The input arguments to SEPARATE SPARSE DATA are the same as the output argu-
ments of LOAD ALL DATA, with the exception of SPARSE LIST, which is a cell structure of
strings containing the names of datatypes considered sparse to the user.

Output [X_time_index_dense,position_dense,X_dat_dense,X_err_

dense,data_info_dense,data_type_dense,X_weight_dense,

X_time_index_sparse,position_sparse,X_dat_sparse,X_

err_sparse,data_info_sparse,data_type_sparse,X_weight_

sparse,all_position]=separate_sparse_data

• The output is similarly the same as the inputs, except that variables that have
DENSE after them are only contain dense data and those that have SPARSE after them

only contain sparse data. The only exception is ALL POSITION, which is the list of all
observatino point positions on the surface listed first for dense datasets, then for sparse
datasets.

file:separate_sparse_data.m
file:separate_sparse_data.m

9.1. DATA/CONVENTIONS LOADING 85

m-File Summary for set_defaults.m
File Name: set_defaults.m File Type: script
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: Assigns the default values of various parameters and initializes

variables that need to be initialized. See also PCAIM DRIVER,
LOAD PREFERENCES.

Variables

• n_comp
• n_comp_mean
• mean_function
• basic
• center_function
• meanless_V
• X_dat
• X_err
• X_rescale
• X_time’
• X_loc
• data_type
• stn_name
• long
• lat
• options
• position

file:set_defaults.m
file:set_defaults.m

86 CHAPTER 9. .M-FILES

m-File Summary for weight_calc.m
File Name: weight_calc.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: Weigh the various data entries for optimization X WEIGHT =

WEIGHT CALC(X err) recasts each entry of each cell of X err as
X WEIGHT{k,l}(i,j) = 1 / X ERR{k,l}(i,j)^2. For instance,
this means calculation of χ2 of the data is then (X MODEL -

X DAT).^2 * X WEIGHT during the decomposition (for minimization
of χ2). X WEIGHT = WEIGHT CALC(X ERR, X RESCALE) recasts
each entry of each cell of X err as X WEIGHT{k,l}(i,j) = 1 /

X ERR{k,l}(i,j)^2 * X RESCALE{k,l}(i,j). This allows consis-
tent reweighting of the data for decomposition purposes while not
modifying the original error bars. X WEIGHT = WEIGHT CALC(X ERR,

X RESCALE,P) recasts each entry of each cell of X ERR

as X WEIGHT{k,l}(i,j) = 1 / abs(X ERR{k,l}(i,j))^P *

X RESCALE{k,l}(i,j). This allows consistent reweighting of the
data for decomposition purposes and use of the pth power
on the error weight. Example: X err = {[1:5;2:0.5:4]};
X rescale = {ones(2,5)}; X rescale{1}(1,1) = 1/5; X weight

= weight calc(X err,X rescale). See also PCAIM DRIVER.

Input weight_calc(X_err,X_rescale,p)

• X_err
• X_rescale
• p

Output X_weight = weight_calc
• X_weight

file:weight_calc.m
file:weight_calc.m

9.2. DECOMPOSITIONS 87

9.2 Decompositions

These scripts perform linear decompositions of the data.

88 CHAPTER 9. .M-FILES

m-File Summary for calc_abg_multi_component.m
File Name: calc_abg_multi_component.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: X dat = func options{1}; X weight = func options{2};

u index = func options{3}; v index = func options{4};
n datasets = func options{5}; Example: PCAIM driver See
also dfunc mean zero sum V transform, conjugate gradient,
decomp srebro CG simultaneous, decomp data, PCAIM driver.

Input calc_abg_multi_component(x,r,func_options)

• x
• r
• func_options

Output [alpha, beta, gamma] = calc_abg_multi_component

• alpha
• beta
• gamma

file:calc_abg_multi_component.m
file:calc_abg_multi_component.m

9.2. DECOMPOSITIONS 89

m-File Summary for calc_abg_zero_sum_V_transform.m
File Name: calc_abg_zero_sum_V_

transform.m

File Type: function

Author: Andrew Kositsky
Maintainer: Hugo Perfettini

Contact E-mail: pcaim@gps.caltech.edu
Version: 1.0.0.0

File Description: The time functions buried in the input guess X are in an
orthogonal basis of a subspace M of all time functions such
that w ∈ M if and only if sum(w) = 0. In order to com-
pute the objective function in this case, we transform back
into a basis with basis vectors [1, 0, ...,−1], [0, 1, 0, ...,−1], ...,
[0, 0, ..., 1,−1], from which it is easy to calculate the displace-
ment at each time for each component. Example: PCAIM driver.
See also dfunc mean zero sum V transform, conjugate gradient,
decomp srebro CG simultaneous, decomp data, PCAIM driver.

Input calc_abg_zero_sum_V_transform(x,r,func_options)

• x
• r
• func_options

Output [alpha, beta, gamma] = calc_abg_zero_sum_V_transform

• alpha
• beta
• gamma

file:calc_abg_zero_sum_V_transform.m
file:calc_abg_zero_sum_V_transform.m
file:calc_abg_zero_sum_V_transform.m

90 CHAPTER 9. .M-FILES

m-File Summary for decomp_data.m
File Name: decomp_data.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: DECOMP DATA General decomposition function call.

[U,S,V,CHI2 MODIFIED,ELAPSED TIME,ITER NUM] =

DECOMP DATA(X DAT, X TIME INDEX, X WEIGHT, N COMP,
DECOMP FUNCTION, DECOMP OPTIONS) calls DECOMP FUNCTION in
EVAL with the same inputs and outputs (except DECOMP FUNCTION

is ommitted from the inputs) as this function. This al-
lows the user to change the decomposition function with-
out needing to edit PCAIM driver. Example: PCAIM driver.
Also see DECOMP SREBRO CG SIMULTANEOUS, decomp srebro EM,
PCAIM driver.

Input decomp_data(X_dat, X_time_index, X_weight, n_

comp, decomp_function, decomp_options)

• X_dat
• X_time_index
• X_weight
• n_comp
• decomp_function
• decomp_options

Output [U,S,V,chi2_modified,elapsed_time,iter_num] = decomp_

data

• U
• S
• V
• chi2_modified
• elapsed_time
• iter_num

file:decomp_data.m
file:decomp_data.m

9.2. DECOMPOSITIONS 91

m-File Summary for decomp_srebro_CG_simultaneous.m
File Name: decomp_srebro_CG_

simultaneous.m

File Type: function

Author: Andrew Kositsky
Maintainer: Hugo Perfettini

Contact E-mail: pcaim@gps.caltech.edu
Version: 1.0.0.0

File Description: DECOMP SREBRO CG SIMULTANEOUS Simultanous multicompo-
nent low-rank matrix approximation using CG on weighted
F-norm [U,S,V,CHI2 MODIFIED,ELAPSED TIME,ITER NUM]

= DECOMP SREBRO CG SIMULTANEOUS(X DAT, X TIME INDEX,

X WEIGHT, N COMP, DECOMP OPTIONS) uses the conjugate gradient
algorithm on N COMP components simultaneously to find the local
minimum of the objective function, given in DECOMP OPTIONS, with
weights X WEIGHT. Example: PCAIM driver. See also decomp data,
decomp srebro EM, PCAIM driver.

Input decomp_srebro_CG_simultaneous(X_dat, X_time_index, X_

weight, n_comp, decomp_options)

• X_dat
• X_time_index
• X_weight
• n_comp
• decomp_options

Output [U,S,V,chi2_modified,elapsed_time,iter_num] = decomp_

srebro_CG_simultaneous

• U
• S
• V
• chi2_modified
• elapsed_time
• iter_num

file:decomp_srebro_CG_simultaneous.m
file:decomp_srebro_CG_simultaneous.m
file:decomp_srebro_CG_simultaneous.m

92 CHAPTER 9. .M-FILES

m-File Summary for decomp_srebro_EM.m
File Name: decomp_srebro_EM.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: DECOMP SREBRO EM Simultanous multicomponent low-

rank matrix approximation using EM on weighted F-
norm [U,S,V,CHI2 MODIFIED,ELAPSED TIME,ITER NUM] =

DECOMP SREBRO EM(X DAT, X TIME INDEX, X WEIGHT, N COMP,

DECOMP OPTIONS) uses a expectation maximization routine
on N COMP components simultaneously to find the local mini-
mum of the objective function, given in DECOMP OPTIONS, with
weights X WEIGHT. Example: PCAIM driver. See also decomp data,
DECOMP SREBRO CG SIMULTANEOUS, PCAIM driver.

Input decomp_srebro_EM(X_dat, X_time_index, X_weight, n_

comp, decomp_options)

• X_dat
• X_time_index
• X_weight
• n_comp
• decomp_options

Output [U,S,V,chi2_modified,elapsed_time,iter_num] = decomp_

srebro_EM

• U
• S
• V
• chi2_modified
• elapsed_time
• iter_num

file:decomp_srebro_EM.m
file:decomp_srebro_EM.m

9.2. DECOMPOSITIONS 93

m-File Summary for gradient_descent_chi2.m
File Name: gradient_descent_chi2.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description:

Input gradient_descent_chi2(X_dat,x,func,dfunc,iter_max,ftol,

func_options,dfunc_options)

• X_dat
• x
• func
• dfunc
• iter_max
• ftol
• func_options
• dfunc_options

Output [x,F,iter] = gradient_descent_chi2

• x
• F
• iter

file:gradient_descent_chi2.m
file:gradient_descent_chi2.m

94 CHAPTER 9. .M-FILES

9.2.1 Centering

9.2. DECOMPOSITIONS 95

m-File Summary for center_data.m
File Name: center_data.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: CENTER DATA centers the input data matrix X DAT.

[X DAT,MEAN OFFSETS] = CENTER DATA(X DAT, X TIME INDEX,

X WEIGHT, CENTER FUNCTION, MEAN FUNCTION, N COMP MEAN,

MEAN OPTIONS) has two primary run methods at this point,
CENTER FUNCTION = ’basic’, where the MEAN OFFSETS are esti-
mated via a weighted mean of the data, and CENTER FUNCTION

= ’advanced’ where the MEAN OFFSETS are estimated via a
N COMP MEAN component linear decomposition plus mean offsets
model. MEAN FUNCTION is the name of the function to-be-called for
determining the optimal values of the means, and MEAN OPTIONS

are the options necessary for MEAN FUNCTION. X DAT, X TIME INDEX,
X WEIGHT as inputs are all the same as in the script PCAIM DRIVER.
X DAT as an output is the input X DAT with the MEAN OFFSETS

estimate removed. Example: PCAIM driver. See also PCAIM DRIVER.

Input center_data(X_dat, X_time_index, X_weight,center_

function, mean_function, n_comp_mean, mean_options)

• X_dat
• X_time_index
• X_weight
• center_function
• mean_function
• n_comp_mean
• mean_options

Output [X_dat,mean_offsets] = center_data

• X_dat
• mean_offsets

file:center_data.m
file:center_data.m

96 CHAPTER 9. .M-FILES

m-File Summary for decomp_CG_means.m
File Name: decomp_CG_means.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: Decompose X dat into linear components and mean

offsets [MEAN OFFSET FINE,ELAPSED TIME,ITER NUM] =

DECOMP CG MEANS(X DAT, X TIME INDEX, X WEIGHT, U,S,V,

MEAN OPTIONS) decomposes the data cell X DAT into a number of
linear components N COMP MEAN specified in MEAN OPTIONS and one
mean estimate per time series. X DAT, X TIME INDEX, X WEIGHT

are all the same as in PCAIM DRIVER; U,S,V form an initial guess
at the decomposition (U*S,V are the assumed components); and
MEAN OPTIONS gives the function FUNC and derivative DFUNC of
the function to be used by the conjugate gradient algorithm, the
maximum number of iterations within the conjugate gradient
algorithm (iter max), convergence tolerance (TOL), and options for
FUNC and DFUNC. Example: PCAIM driver. See also CENTER DATA,
DECOMP MEANS, PCAIM DRIVER.

Input ecomp_CG_means(X_dat, X_time_index, X_weight, U,S,

V, mean_options)

• X_dat
• X_time_index
• X_weight
• U
• S
• V
• mean_options

Output [mean_offset_fine,elapsed_time,iter_num] = decomp_CG_

means

• mean_offset_fine
• elapsed_time
• iter_num

file:decomp_CG_means.m
file:decomp_CG_means.m

9.2. DECOMPOSITIONS 97

m-File Summary for decomp_means.m
File Name: decomp_means.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: DECOMP MEANS decomposes X dat to achieve an estimate of

the mean offsets DECOMP MEANS is an eval statement call with
X DAT, X TIME INDEX, X WEIGHT as defined in PCAIM DRIVER, some
MEAN FUNCTION from which we will get MEAN OFFSET FINE with
which to correct the mean of X DAT, the ELAPSED TIME of the
mean-searching procedure, and the number of iterations ITER NUM

of the algorithm used), an initial guess at a linear decompo-
sition U,S,V, and options for MEAN FUNCTION in MEAN OPTIONS.
DECOMP MEANS is programmed generally so that the user can change
the MEAN FUNCTION to be used easily. All that needs to hap-
pen is the input and output arguments are the same as the de-
fault MEAN FUNCTION, DECOMP CG MEANS. Example: PCAIM driver.
See also DECOMP CG MEANS, CENTER DATA, PCAIM DRIVER.

Input decomp_means(X_dat, X_time_index,X_weight, U,S,V, mean_

function, mean_options)

• X_dat
• X_time_index
• X_weight
• U
• S
• V
• mean_function
• mean_options

Output [mean_offset_fine,elapsed_time,iter_num] = decomp_means

• mean_offset_fine
• elapsed_time
• iter_num

file:decomp_means.m
file:decomp_means.m

98 CHAPTER 9. .M-FILES

9.2.2 Conjugate Gradient

9.2. DECOMPOSITIONS 99

m-File Summary for conjugate_gradient.m
File Name: conjugate_gradient.m File Type: function
Author: Martin King; heavily modified by Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description:

1. Conjugate Gradient Method with Flecther-Reeves (or Polak-
Ribiere) to find a vector x that gives a MINIMUM of a function
(a scalar).

2. Ideas taken from J.R. Shewchuk and Numerical Recipes.

3. You must modify your own function to minimise in a Matlab
function file called func.m (scalar output) and the first deriva-
tive of that function in a matlab function file called dfunc.m,
which has a vector output in (del/del(x1) del/del(x2)

... etc)’.

4. If you want to MAXIMISE a function, multiply -1 to the out-
put of func.m and dfunc.m (be careful here, dfunc.m may use
func.m; to be safe, give dfunc.m the original output of func.m
and then multiply -1 to dfunc.m at the end). If you are brave,
reverse the search direction r and d for maximisation.

5. If the method is not converging or is giving you a solution that
doesn’t make sense, change the initial guess.

6. As an example, a simple function is given in func.m and its
gradient vector in dfunc.m. Change the initial guess to x = [1

; 1] for example, the solution it gives is incorrect. The reason
is obvious if you plot the function (it is the saddle points).

7. I have used these scripts to optimise a fairly complicated func-
tion. They seem to work well. If you notice any bug or have
any comment, please email me king at ictp at it.

Input conjugate_gradient(X_dat,x,func,dfunc,iter_max,ftol,

func_options,dfunc_options)

file:conjugate_gradient.m
file:conjugate_gradient.m

100 CHAPTER 9. .M-FILES

• X_dat
• x
• func
• dfunc
• iter_max
• ftol
• func_options
• dfunc_options

Output [x,F,iter] = conjugate_gradient

• x
• F
• iter

9.2. DECOMPOSITIONS 101

m-File Summary for dfunc_mean_zero_sum_V_transform_corrected.m
File Name: dfunc_mean_zero_sum_V_

transform_corrected.m

File Type: function

Author: Andrew Kositsky
Maintainer: Hugo Perfettini

Contact E-mail: pcaim@gps.caltech.edu
Version: 1.0.0.0

File Description: FUNC MULTI COMPONENT is a multicomponent Sre-
bro objective function for CG. [F OUT] =

DFUNC MEAN ZERO SUM V TRANSFORM CORRECTED(X,FUNC OPTIONS)

calculates the derivative of the modified reduced chi-square value for
the input guess X, using DFUNC OPTIONS to parse this vector input:
X dat = dfunc options1; X weight = dfunc options2; u index

= dfunc options3; v index = dfunc options4; n datasets

= dfunc options5; X row = dfunc options6; v end entry =

dfunc options7; v index size = dfunc options8; X row =

dfunc options9; n comp mean = dfunc options10; n tseries =

dfunc options11; n epochs = dfunc options12; X time index =

dfunc options13; transformation matrix = dfunc options14;
transformation matrix inv= dfunc options15; v index in x =

dfunc options16. The time functions buried in the input guess
X are in an orthogonal basis of a subspace M of all time functions
such that w ∈ M if and only if sum(w) = 0. In order to compute
the objective function in this case, we transform back into a
basis with basis vectors [1, 0 , ... -1], [0,1,0,...,-1], ...

[0,0,...,1,-1], from which it is easy to calculate the displacement
at each time for each component. Example: PCAIM driver See
also dfunc mean zero sum V transform, conjugate gradient,
decomp srebro CG simultaneous, decomp data, PCAIM driver.

Input dfunc_mean_zero_sum_V_transform_corrected(x,dfunc_

options)

• x
• dfunc_options

Output [fprime_out] = dfunc_mean_zero_sum_V_transform_corrected

file:dfunc_mean_zero_sum_V_transform_corrected.m
file:dfunc_mean_zero_sum_V_transform_corrected.m
file:dfunc_mean_zero_sum_V_transform_corrected.m

102 CHAPTER 9. .M-FILES

• fprime_out

9.2. DECOMPOSITIONS 103

m-File Summary for dfunc_mean_zero_sum_V_transform.m
File Name: dfunc_mean_zero_sum_V_

transform.m

File Type: function

Author: Andrew Kositsky
Maintainer: Hugo Perfettini

Contact E-mail: pcaim@gps.caltech.edu
Version: 1.0.0.0

File Description: FUNC MULTI COMPONENT multicomponent Sre-
bro objective function for CG. [F OUT] =

DFUNC MEAN ZERO SUM V TRANSFORM(X,FUNC OPTIONS) calcu-
lates the derivative of the modified reduced chi-square value for
the input guess X, using DFUNC OPTIONS to parse this vector input:
X dat = dfunc options1; X weight = dfunc options2; u index

= dfunc options3; v index = dfunc options4; n datasets

= dfunc options5; X row = dfunc options6; v end entry =

dfunc options7; v index size = dfunc options8; X row =

dfunc options9; n comp mean = dfunc options10; n tseries =

dfunc options11; n epochs = dfunc options12; X time index =

dfunc options13; transformation matrix = dfunc options14;
transformation matrix inv= dfunc options15; v index in x =

dfunc options16. The time functions buried in the input guess X

are in an orthogonal basis of a subspace M of all time functions
such that w ∈ M if and only if sum(w) = 0. In order to compute
the objective function in this case, we transform back into a
basis with basis vectors [1, 0 , ... -1], [0,1,0,...,-1], ...

[0,0,...,1,-1], from which it is easy to calculate the displacement
at each time for each component. Example: PCAIM driver. See
also dfunc mean zero sum V transform, conjugate gradient,
decomp srebro CG simultaneous, decomp data, PCAIM driver.

Input dfunc_mean_zero_sum_V_transform(x,dfunc_options)

• x
• dfunc_options

Output [fprime_out] = dfunc_mean_zero_sum_V_transform

• fprime_out

file:dfunc_mean_zero_sum_V_transform.m
file:dfunc_mean_zero_sum_V_transform.m
file:dfunc_mean_zero_sum_V_transform.m

104 CHAPTER 9. .M-FILES

m-File Summary for dfunc_multi_component.m
File Name: dfunc_multi_component.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: DFUNC MULTI COMPONENT multicomponent Srebro ob-

jective function derivative for CG. [F PRIME OUT] =

DFUNC MULTI COMPONENT(X,DFUNC OPTIONS) calculates the
derivative of the modified reduced chi-square value for the
input guess X, using DFUNC OPTIONS to parse this vector in-
put: X dat = dfunc options1; X weight = dfunc options2;
u index = dfunc options3; v index = dfunc options4;
n datasets = dfunc options5; X row = dfunc options6;
n comp mean = dfunc options7; n tseries = dfunc options8;
n epochs = dfunc options9; X time index = dfunc options10;
Example: PCAIM driver See also func multi component,
conjugate gradient, decomp srebro CG simultaneous,
decomp data, PCAIM driver.

Input dfunc_multi_component(x,dfunc_options)

• x
• dfunc_options

Output [fprime_out] = dfunc_multi_component

• fprime_out

file:dfunc_multi_component.m
file:dfunc_multi_component.m

9.2. DECOMPOSITIONS 105

m-File Summary for func_mean_zero_sum_V_transform_corrected.m
File Name: func_mean_zero_sum_V_

transform_corrected.m

File Type: function

Author: Andrew Kositsky
Maintainer: Hugo Perfettini

Contact E-mail: pcaim@gps.caltech.edu
Version: 1.0.0.0

File Description: FUNC MULTI COMPONENT Multicomponent
Srebro objective function for CG. [F OUT] =

FUNC MEAN ZERO SUM V TRANSFORM CORRECTED(X,FUNC OPTIONS)

calculates the modified reduced chi-square value for the in-
put guess X, using FUNC OPTIONS to parse this vector in-
put: X dat = func options1; X weight = func options2;
u index = func options3; v index = func options4;
n datasets = func options5; mean index = func options6;
v end entry = func options7; v index size = func options8;
n epochs =func options9; n comp =func options10;
transformation matrix inv = func options11; v index in x =

func options12. The time functions buried in the input guess X

are in an orthogonal basis of a subspace M of all time functions
such that w ∈ M if and only if sum(w) = 0. In order to compute
the objective function in this case, we transform back into a
basis with basis vectors [1, 0 , ... -1], [0,1,0,...,-1], ...

[0,0,...,1,-1], from which it is easy to calculate the displace-
ment at each time for each component. Example: PCAIM driver

See also dfunc mean zero sum V transform, conjugate gradient,
decomp srebro CG simultaneous, decomp data, PCAIM driver.

Input func_mean_zero_sum_V_transform_corrected(x,func_

options)

• x
• func_options

Output [f_out] = func_mean_zero_sum_V_transform_corrected

• f_out

file:func_mean_zero_sum_V_transform_corrected.m
file:func_mean_zero_sum_V_transform_corrected.m
file:func_mean_zero_sum_V_transform_corrected.m

106 CHAPTER 9. .M-FILES

m-File Summary for func_mean_zero_sum_V_transform.m
File Name: func_mean_zero_sum_V_

transform.m

File Type: function

Author: Andrew Kositsky
Maintainer: Hugo Perfettini

Contact E-mail: pcaim@gps.caltech.edu
Version: 1.0.0.0

File Description: FUNC MULTI COMPONENT multicomponent Sre-
bro objective function for CG. [F OUT] =

FUNC MEAN ZERO SUM V TRANSFORM(X,FUNC OPTIONS) calculates
the modified reduced chi-square value for the input guess X, using
FUNC OPTIONS to parse this vector input: X dat = func options1;
X weight = func options2; u index = func options3;
v index = func options4; n datasets = func options5;
mean index = func options6; v end entry = func options7;
v index size = func options8; n epochs =func options9;
n comp =func options10; transformation matrix inv =

func options11; v index in x = func options12. The time
functions buried in the input guess X are in an orthogonal ba-
sis of a subspace M of all time functions such that w ∈ M
if and only if sum(w) = 0. In order to compute the objec-
tive function in this case, we transform back into a basis
with basis vectors [1, 0 , ... -1], [0,1,0,...,-1], ...

[0,0,...,1,-1], from which it is easy to calculate the displace-
ment at each time for each component. Example: PCAIM driver.
See also dfunc mean zero sum V transform, conjugate gradient,
decomp srebro CG simultaneous, decomp data, PCAIM driver.

Input func_mean_zero_sum_V_transform(x,func_options)

• x
• func_options

Output [f_out] = func_mean_zero_sum_V_transform

• f_out

file:func_mean_zero_sum_V_transform.m
file:func_mean_zero_sum_V_transform.m
file:func_mean_zero_sum_V_transform.m

9.2. DECOMPOSITIONS 107

m-File Summary for func_multi_component.m
File Name: func_multi_component.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: FUNC MULTI COMPONENT multicomponent Srebro objective function

for CG. [F OUT] = FUNC MULTI COMPONENT(X,FUNC OPTIONS)

calculates the modified reduced chi-square value for the in-
put guess X, using FUNC OPTIONS to parse this vector in-
put: X dat = func options1; X weight = func options2;
u index = func options3; v index = func options4;
n datasets = func options5; Example: PCAIM driver.
See also dfunc multi component, conjugate gradient,
decomp srebro CG simultaneous, decomp data, PCAIM driver.

Input func_multi_component(x,func_options)

• x
• func_options

Output [f_out] = func_multi_component

• f_out

file:func_multi_component.m
file:func_multi_component.m

108 CHAPTER 9. .M-FILES

9.3 Fault Related

These scripts define, load, and/or manipulate aspects of the code concerning the fault
model.

9.3. FAULT RELATED 109

m-File Summary for compute_laplacian_driver.m
File Name: compute_laplacian_driver.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: COMPUTE LAPLACIAN DRIVER Driver script to generate Laplacian

[LAP,IEDGE]=COMPUTE LAPLACIAN DRIVER(FAULT MODEL,OPTIONS)

takes in a fault model, computes an approximation of the Laplacian
for the fault model, and attempts to find the edges of the fault
and assigns these to IEDGE. Example: PCAIM driver. See also
compute laplacian, get fault model, PCAIM driver.

Input compute_laplacian_driver(fault_model,options)

• fault_model
• options

Output [Lap,iedge] = compute_laplacian_driver

• Lap
• iedge

file:compute_laplacian_driver.m
file:compute_laplacian_driver.m

110 CHAPTER 9. .M-FILES

m-File Summary for compute_laplacian.m
File Name: compute_laplacian.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: COMPUTE LAPLACIAN Generate Laplacian with respect to a set of

points. LAP = COMPUTE LAPLACIAN(X,Y,Z,N) takes in the coordi-
nates of a set of points that are randomly scattered on an un-
known surface and generates a discrete approximation of the Lapla-
cian using the nearest N points. X, Y, and Z are column vectors
of the same length, and N must be a positive integer. Example:
x = repmat([0:5],6,1); x = x(:); y = repmat([0:5]’,1,6);

y = y(:); z = repmat([0:0.1:0.5],6,1); z = z(:); N = 4; Lap
= compute laplacian(x,y,z,N). See also compute laplacian,
get fault model, PCAIM driver.

Input compute_laplacian(x,y,z,N)

• x
• y
• z
• N

Output Lap = compute_laplacian

• Lap

file:compute_laplacian.m
file:compute_laplacian.m

9.3. FAULT RELATED 111

m-File Summary for compute_point_source.m
File Name: compute_point_source.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: COMPUTE RECTANGULAR SOURCE Compute Okada

Greens function for rectangular patches. G =

COMPUTE RECTANGULAR SOURCE(X,Y,Z,STRIKE,DIP,AREA,VERTICES,

POSITION, GREENSEXTERNALFCNDIR) computes the Green’s func-
tions for patches with 6 parameters X, Y, Z, STRIKE, DIP, AREA and
positions on the surface given in POSITION. GREENSEXTERNALFCNDIR
tells the function where to look for the compiled FORTRAN code
that does the computation. Example: PCAIM driver. See also
get fault model,compute rectangular source, PCAIM driver.

Input compute_point_source(x,y,z,strike,dip,area,vertices,

position,GreensExternalFcnDir)

• x
• y
• z
• strike
• dip
• area
• vertices
• position
• GreensExternalFcnDir

Output G = compute_point_source

• G

file:compute_point_source.m
file:compute_point_source.m

112 CHAPTER 9. .M-FILES

m-File Summary for compute_rectangular_source.m
File Name: compute_rectangular_source.mFile Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: COMPUTE RECTANGULAR SOURCE Compute Okada

Greens function for rectangular patches. G =

COMPUTE RECTANGULAR SOURCE(X,Y,Z,STRIKE,DIP,LENGTH,WIDTH,

POSITION, GREENSEXTERNALFCNDIR) computes the Green’s func-
tions for patches with 7 parameters X, Y, Z, STRIKE, DIP,
LENGTH, WIDTH and positions on the surface given in POSITION.
GREENSEXTERNALFCNDIR tells the function where to look for the
compiled FORTRAN code that does the computation. Example:
PCAIM driver. See also get fault model, compute point source,
PCAIM driver.

Input compute_rectangular_source(x,y,z,strike,dip,length,

width,position,GreensExternalFcnDir)

• x
• y
• z
• strike
• dip
• length
• width
• position
• GreensExternalFcnDir

Output G = compute_rectangular_source

• G

file:compute_rectangular_source.m
file:compute_rectangular_source.m

9.3. FAULT RELATED 113

m-File Summary for find_rectangle_param.m
File Name: find_rectangle_param.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: FIND RECTANGLE PARAM Find useful values for rectangular patches.

[RAKE,AREA,VERTICES,STRIKE VECT,UPDIP VECT,NORMAL VECT]=

FIND RECTANGLE PARAM(X,Y,Z,STRIKE,DIP,LENGTH,WIDTH,VECT TECT)

Takes in the seven defining parameters for an Okada formulation
rectangular patch and a vector defining the overall tectonic motion
vector, and it outputs the rake on each patch in a vector RAKE,
the area of each patch in a vector AREA, the vertices of the rectangle
in a matrix VERTICES, the strike vectors in a matrix STRIKE VECT,
the up-dip vectors in a matrix UPDIP VECT, and the normal vectors
to each patch in a matrix NORMAL VECT. Example: PCAIM driver.
Also see find triangle param, PCAIM driver.

Input find_rectangle_param(x,y,z,strike,dip,length,width,

vect_tect)

• find_rectangle_param(x
• y
• z
• strike
• dip
• length
• width
• vect_tect

Output [rake,area,vertices,strike_vect,updip_vect,normal_

vect] = find_rectangle_param

• rake
• area
• vertices
• strike_vect
• updip_vect
• normal_vect

file:find_rectangle_param.m
file:find_rectangle_param.m

114 CHAPTER 9. .M-FILES

m-File Summary for find_triangle_param.m
File Name: find_triangle_param.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: FIND TRIANGLE PARAM Find useful values for triangular-point

sources. [XC,YX,ZC,STRIKE,DIP,RAKE,AREA,VERTICES,STRIKE VECT,

UPDIP VECT, NORMAL VECT]= FIND TRIANGLE PARAM(T1,T2,T3,VECT TECT)

Takes in the three corners of the patches and the overall tectonic
motion vector, and it outputs the x,y,z coordinates of the cen-
ter of the triangular patch (XC, YC, ZC), the strike vector for
each patch (STRIKE), the up-dip vector (DIP), the rake on each
patch in a vector (RAKE), the area of each patch in a vector
(AREA), the vertices of the rectangle in a matrix (VERTICES), the
strike vectors in a matrix (STRIKE VECT), the up-dip vectors in
a matrix (UPDIP VECT), and the normal vectors to each patch
in a matrix (NORMAL VECT). Example: PCAIM driver. Also see
find triangle param, PCAIM driver.

Input find_triangle_param(t1,t2,t3,vect_tect)

• t1
• t2
• t3
• vect_tect

Output [xc,yc,zc,strike,dip,rake,area,vertices,strike_vect,

updip_vect,normal_vect] = find_triangle_param

• xc
• yc
• zc
• strike
• dip
• rake
• area
• vertices

file:find_triangle_param.m
file:find_triangle_param.m

9.3. FAULT RELATED 115

• strike_vect
• updip_vect
• normal_vect

116 CHAPTER 9. .M-FILES

m-File Summary for get_fault_model.m
File Name: get_fault_model.m File Type: function
Author: Andrew Kositsky and Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: GET FAULT MODEL Load or build a fault

model, Greens fcn, and Laplacian.
[G,LAP,FAULT MODEL,ORIGIN,RECTANGULAR FAULT FLAG,IEDGE]

= GET FAULT MODEL(GET FAULT MODEL OPTIONS,LAPLACIAN OPTIONS)

generates/loads the fault model, Green’s functions,
and Laplacian for the inversion scenario. Exam-
ple: PCAIM driver. See also load fault model rect,
load fault model point, load greens function,
compute rectangular source, compute point source,
load laplacian, compute laplacian driver, PCAIM driver.

Input get_fault_model(get_fault_model_options,laplacian_

options)

• get_fault_model_options
• laplacian_options

Output [G,Lap,fault_model,origin,rectangular_fault_flag,

iedge] = get_fault_model

• G
• Lap
• fault_model
• origin
• rectangular_fault_flag
• iedge

file:get_fault_model.m
file:get_fault_model.m

9.3. FAULT RELATED 117

9.3.1 Green’s Function

118 CHAPTER 9. .M-FILES

m-File Summary for load_fault_model_point.m
File Name: load_fault_model_point.m File Type: function
Author: Andrew Kositsky and Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: LOAD FAULT MODEL POINT Load 6 parameters plus vertices

of point patches. [X,Y,Z,STRIKE,DIP,AREA,VERTICES]

=LOAD FAULT MODEL RECT(FaultModelFile) loads the X, Y,
Z coordinates of each rectangular fault element from the file
FAULTMODELFILE with respect to some pre-defined origin.
FAULTMODELFILE is purely numeric (no header) with a format defined
by the ”indexes” below. By default, these are set to: east index

= 1; East offset of center from origin (km) north index = 2;

North offset of center from origin (km) depth index = 3; depth
of lower edge of fault (km) strike index = 4; strike, clockwise
from N (degrees) dip index = 5; dip angle, from the horizontal
(degrees) area index = 6; fault length along the strike direc-
tion(km) first vertex index = 7; fault width in dip direction
(km). It is reasonable to modify this file if your standard input
data comes in a different order. It is assumed that all columns after
first vertex index are other vertices. Example: FaultModelFile
= [’Pisco 2007 Postseismic/faultmodel/’pisco.trg’];
[x,y,z,strike,dip,length,width] =

load fault model rect(FaultModelFile). See also
load fault model rect, get fault model, PCAIM driver.

Input load_fault_model_point(FaultModelFile)

• FaultModelFile

Output [x,y,z,strike,dip,area,vertices] = load_fault_model_

point

• x
• y
• z
• strike

file:load_fault_model_point.m
file:load_fault_model_point.m

9.3. FAULT RELATED 119

• dip
• area
• vertices

120 CHAPTER 9. .M-FILES

m-File Summary for load_fault_model_rect.m
File Name: load_fault_model_rect.m File Type: function
Author: Andrew Kositsky and Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: LOAD FAULT MODEL RECT Load all 7 parameters of the

rectangular patches. [X,Y,Z,STRIKE,DIP,LENGTH,WIDTH]

=LOAD FAULT MODEL RECT(FaultModelFile) loads the X, Y,
Z coordinates of each rectangular fault element from the file
FAULTMODELFILE with respect to some pre-defined origin, the
STRIKE and DIP angles of the fault element, and the LENGTH and
WIDTH of the fault element. FAULTMODELFILE is purely numeric
(no header) with a format defined by the ”indexes” below. By
default, these are set to: east index = 1; East offset of center
from origin (km) north index = 2; North offset of center from
origin (km) depth index = 3; depth of lower edge of fault (km)
strike index = 4; strike, clockwise from N (degrees) dip index

= 5; dip angle, from the horizontal (degrees) length index =

6; fault length along the strike direction (km) width index =

7; fault width in dip direction (km) It is reasonable to modify
this file if your standard input data comes in a different or-
der. It is assumed that all columns after first vertex index

are other vertices. Example: FaultModelFile = [’Nias 2005

Postseismic/fault/’Nias fault description LATLON ORG1.8N9

6.6E.dat’]; [x,y,z,strike,dip,length,width] =

load fault model rect(FaultModelFile). See also
load fault model point, get fault model, PCAIM driver.

Input load_fault_model_rect(FaultModelFile)

• FaultModelFile

Output [x,y,z,strike,dip,length,width] =load_fault_model_rect

• x
• y
• z

file:load_fault_model_rect.m
file:load_fault_model_rect.m

9.3. FAULT RELATED 121

• strike
• dip
• length
• width

122 CHAPTER 9. .M-FILES

m-File Summary for load_greens_function.m
File Name: load_greens_function.m File Type: function

file:load_greens_function.m
file:load_greens_function.m

9.3. FAULT RELATED 123

Author: Andrew Kositsky
Maintainer: Hugo Perfettini

Contact E-mail: pcaim@gps.caltech.edu
Version: 1.0.0.0

File Description: LOAD GREENS FUNCTION Loads in an existing Greens function
from a file. G = LOAD GREENS FUNCTION(GREENSFUNCTIONFILE)
loads in a pre-defined Greens function matrix from a file,
GREENSFUNCTION FILE, and places it in the Greens func-
tion matrix G. The GREENSFUNCTIONFILE is assumed to
be in the format: disloc x val = data1; disloc y val =

data2; observation x val = data3; observation y val

= data4; G E str slip val = data5; G N str slip val =

data6; G U str slip val = data7; G E dip slip val = data8;
G N dip slip val = data9; G U dip slip val = data10; where:
DISLOC X VAL is the location of the dislocation in x from the
origin, DISLOC Y VAL is the location of the dislocation in y from
the origin, OBSERVATION X VAL is the location of the observation
points in x from the origin, OBSERVATION Y VAL is the location of
the observation points in y from the origin, G E STR SLIP VAL is
the effect of unit slip in the strike-slip direction on displacement
in the east direction at the observation point, G N STR SLIP VAL is
the effect of unit slip in the strike-slip direction on displacement
in the north direction at the observation point, G U STR SLIP VAL

is the effect of unit slip in the strike-slip direction on displacement
in the up direction at the observation point, G E DIP SLIP VAL is
the effect of unit slip in the dip-slip direction on displacement in
the east direction at the observation point, G N DIP SLIP VAL is
the effect of unit slip in the dip-slip direction on displacement in
the north direction at the observation point, G U DIP SLIP VAL is
the effect of unit slip in the dip-slip direction on displacement in
the up direction at the observation point. The dislocation-station
pairs are assumed to be in the order: Disloc 1-Obs 1 Disloc

1-Obs 2 Disloc 1-Obs 3 ... Disloc 1-Obs n Disloc 2-Obs 1

Disloc 2-Obs 2 Disloc 2-Obs 3 ... Disloc j-Obs i Disloc

j-Obs i+1 ... Disloc N-Obs n, where N is the total number
of dislocations (Disloc|) and n the total number of observation
points on the surface (Obs). Example: PCAIM driver. See also
PCAIM driver.

124 CHAPTER 9. .M-FILES

Input load_greens_function(GreensFunctionFile)

• GreensFunctionFile

Output G = load_greens_function
• G

9.3. FAULT RELATED 125

m-File Summary for project_all_greens_fcn.m
File Name: project_all_greens_fcn.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: PROJECT ALL GREENS FCN Project all Green’s functions based

on datatype. Projects the original Green Function matrix G,
taking into account the type of data given in DATA TYPE

for both dense and sparse datasets. Futhermore, the sparse
datasets are converted into sparse constraints for the inversion
step. Example: PCAIM driver. Also see project greenfunctions,
sparse constraint InSAR calc, PCAIM driver.

Input project_all_greens_fcn(G,all_position,X_dat,X_dat_

sparse,data_type,data_type_sparse,data_info,data_info_

sparse,S,V,X_time_index_sparse,n_comp)

• G
• all_position
• X_dat
• X_dat_sparse
• data_type
• data_type_sparse
• data_info
• data_info_sparse
• S
• V
• X_time_index_sparse
• n_comp

Output [G_projected_dense,G_projected_sparse,sparse_

constraint] = project_all_greens_fcn

• G_projected_dense
• G_projected_sparse
• sparse_constraint

file:project_all_greens_fcn.m
file:project_all_greens_fcn.m

126 CHAPTER 9. .M-FILES

m-File Summary for project_greenfunctions.m
File Name: project_greenfunctions.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: PROJECT GREENFUNCTION Project ENU Green

fcns onto the correct direction. G PROJECTED =

PROJECT GREENFUNCTION(G,DATA TYPE,LOS FILE,G INDEX VECTOR)

Projects the original Green Function matrix G, tak-
ing into account the type of data given in DATA TYPE.
The index vector G INDEX VECTOR{i} contained the
indices corresponding to the dataset i. Example:
nstat1 = 6; nstat2 = 13; npixel = 733; los vector

=rand(npixel,3); save(’los.txt’,’los vector’,’-ascii’);
Gsar = rand(3*npixel,size(G,2));

Gcgps2=rand(3*nstat2,size(G,2)); Gcgps3

= rand(3*nstat1,size(G,2)); G = [Gcgps3;

Gsar; Gcgps2]; data type{1} = ’cGPS3’;

los file{1}=’’; G index vector{1} = [1:3*nstat1];
data type{2} = ’SAR’; los file{2}=’los.txt’;
G index vector{2} = max(G index vector{1}) +

1:max(G index vector{1}) + 1 + 3*npixel; data type{3}
= ’cGPS2’; los file{3} = ’’; G index vector{3} =

max(G index vector{2}) + 1:max(G index vector{2})
+ 3*nstat2; Note: The G index vector can be
also obtained directly using: G index vector =

build G index vector(G,position); G projected =

project greenfunctions(Gnew,data type,los file,G index vector);
G projected{1}: Green function matrix relative to set 1 (cgps3);
G projected{2}: Green function matrix relative to set 2 (SAR);
G projected{3}: Green function matrix relative to set 3 (cgps2);
See also PCAIM driver.

Input project_greenfunctions(G,data_type,los_file,G_index_

vector)

• G

file:project_greenfunctions.m
file:project_greenfunctions.m

9.3. FAULT RELATED 127

• data_type
• los_file
• G_index_vector

Output G_projected=project_greenfunctions

• G_projected

128 CHAPTER 9. .M-FILES

m-File Summary for build_smooth_surface.m
File Name: build_smooth_surface.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: build a smooth surface passing through a group of points of coor-

dinates given by the vectors x, y and z. N nearest is the number
of neighbour used to compute the laplacian (e.g., N nearest = 5)
, the degree of smoothing being given by the parameter lambda

(e.g., lambda = 1000). interp method is a string describing the
interpolation method used by griddata (e.g., interp method =

’cubic’). See griddata documentation for more details (type help

griddata).

Input build_smooth_surface(x,y,z,nx,ny,lambda,N_nearest,

interp_method)

• x
• y
• z
• nx
• ny
• lambda
• N_nearest
• interp_method

Output [xi,yi,zi]=build_smooth_surface

• xi
• yi
• zi

file:build_smooth_surface.m
file:build_smooth_surface.m

9.3. FAULT RELATED 129

m-File Summary for find_string_in_cell.m
File Name: find_string_in_cell.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: find for the string xfind within the cell xcell. iflag = 1 if the

string was encountered once, and iflag = 0 otherwise. The corre-
sponding index with the cell is given as index.

Input find_string_in_cell(xcell,xfind)

• xcell
• xfind

Output [iflag,index]=find_string_in_cell

• iflag
• index

file:find_string_in_cell.m
file:find_string_in_cell.m

130 CHAPTER 9. .M-FILES

m-File Summary for find_triangle_param.m
File Name: find_triangle_param.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: Convention: find fault parameters knowing the coordinates of the

three points t1, t2 and t3 defining the triangle. The tectonic vector
vect tect defines the direction towards which the fault moves and
is used to estimate the rake of the triangle.

Input find_triangle_param(t1,t2,t3,vect_tect)

• t1
• t2
• t3
• vect_tect

Output [xc,yc,zc,strike,dip,rake,area,vertices,strike_vect,

updip_vect,normal_vect]=find_triangle_param

• (xc,yc,zc): coordinates of the center of the triangles.
• strike,dip, rake, and area: strike ,dip, rake, and area vector of the triangles.
• vertices: vertices of the triangle given by [t1,t2,t3].
• strike_vect: along strike base vector for each triangle.
• updip_vect: updip base vector for each triangle.
• normal_vect: normal to the fault base vector for each triangle.

file:find_triangle_param.m
file:find_triangle_param.m

9.3. FAULT RELATED 131

m-File Summary for make_fault_model.m
File Name: make_fault_model.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description:

Input make_fault_model(input_file,outputfile_pcaim,

outputfile_okada,index2file,vect_tect,smooth_param,

angle,nx,ny,options_make_fault_model)

• input_file file containing the initial set of points of the smooth surface. When
provided, index2file(1), index2file(2) and index2file(3) are the column numbers
of input file corresponding to the east, north and updip coordinates. If not provided,
index2file has a default value of [1 2 3] (i.e., long, lat, and updip is assumed).
input file can also be given directly as a 3d vector.
• outputfile_pcaim complete name (including path) of the output file corresponding

to the fault model using the PCAIM code triangular format.
• outputfile_okada complete name (including path) of the output file corresponding

to the fault model using Okada’s format. This file is used for computation of Green
functions. If outputfile pcaim and outputfile okada are leave empty, no output is
written.
• index2file
• vect_tect 3d tectonic vector given in the geographical reference frame. Used to

find the rake of the triangular patches.
• smooth_param value of the smoothing parameter (e.g., 1e2). The higher, the smoother

the surface. When smooth param → +∞, the smoothing surface reduces to a plane.
• angle rotation angle before meshing.
• nx number of triangles along the direction given by angle.
• ny number of triangles along the direction perpendicular to the direction given by

angle.
• options_make_fault_model Possible options. ex: options make fault model =

{’InterpMethod’,’v4’,’Nneighbour’,10,’NaN’}; ’InterpMethod’: Possible interpola-
tion methods are ’v4’, ’cubic’, ’linear’, ’nearest’. Those options come from matlab routine
griddata (type ’help griddata’ for more details). ’NaN’: Force to leave points with NaN
coordinates, if existing. By default, make fault model removes those points. ’Nneigh-
bour’: Number of neighbours used by the function compute laplacian (default value is
5). Option ’Nneighbour’ should be followed by the number of neighbours.

file:make_fault_model.m
file:make_fault_model.m

132 CHAPTER 9. .M-FILES

Output [xc,yc,zc,strike,dip,rake,area,vertices,strike_vect,

updip_vect,normal_vect]=make_fault_model

• xc
• yc
• zc
• strike
• dip
• rake
• area
• vertices
• strike_vect
• updip_vect
• normal_vect

9.3. FAULT RELATED 133

m-File Summary for refine_fault_model_rectangle.m
File Name: refine_fault_model_

rectangle.m

File Type: function

Author: Hugo Perfettini
Maintainer: Hugo Perfettini

Contact E-mail: pcaim@gps.caltech.edu
Version: 1.0.0.0

File Description: Build a finer rectangular fault model. The size of the mesh is
dl new (along strike direction) and dw new (down-dip direction),
with dl new>dl and dw new>dw, dl and dw being the initial rectan-
gular mesh. The inputs are fault param of size (n rect,7), the 7
fault parameters being (x,y,z,strike,dip,dl,dw) for each of the
n rect rectangles. The output fault param new is the new fault
model. See test refine fault model rectangle for an example.
IMPORTANT: All the rectangles need to have the same size. If not,
use this routine for every set of a given size.

Input refine_fault_model_rectangle(fault_param,dl_new,dw_new)

• fault_param: Initial fault parameters.
• dl_new: New along strike length.
• dw_new: New down-dip length.

Output fault_param_new=refine_fault_model_rectangle

• fault_param_new: New fault parameters.

file:refine_fault_model_rectangle.m
file:refine_fault_model_rectangle.m
file:refine_fault_model_rectangle.m

134 CHAPTER 9. .M-FILES

m-File Summary for rotate2d_center_matrix.m
File Name: rotate2d_center_matrix.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: [x1,y1] = rotate2d center(x0,y0,xc,yc,angle) Rotate a 2d

point (x0,y0) of an angle theta (counterclockwise), the coordinates
of rotation center being (xc,yc). The rotated point coordinates are
the ouput (x1,y1).

Input rotate2d_center_matrix(x0,y0,xc,yc,theta)

• x0
• y0
• xc
• yc
• theta

Output [x1,y1]=rotate2d_center_matrix

• x1
• y1

file:rotate2d_center_matrix.m
file:rotate2d_center_matrix.m

9.3. FAULT RELATED 135

m-File Summary for test_make_fault_model.m
File Name: test_make_fault_model.m File Type: script
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description:

Variables

file:test_make_fault_model.m
file:test_make_fault_model.m

136 CHAPTER 9. .M-FILES

9.4 General

These are general use functions that are used in many other functions.

9.4. GENERAL 137

m-File Summary for add_trailing_slash.m
File Name: add_trailing_slash.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: ADD TRAILING SLASH Adds a trailing file separation character

to string. DIRECTORY = ADD TRAILING SLASH(DIRECTORY) checks
whether the end character of the input string DIRECTORY is a file
separation character (’/’ or ’\’), and if not it adds the machine-
specific file separator. Example: directory = ’/home’; directory
= add trailing slash(directory); directory = ’C: \WINDOWS’; di-
rectory = add trailing slash(directory); See also PCAIM DRIVER.

Input add_trailing_slash(directory)

• directory

Output directory = add_trailing_slash

• directory

file:add_trailing_slash.m
file:add_trailing_slash.m

138 CHAPTER 9. .M-FILES

m-File Summary for build_X_matrix.m
File Name: build_X_matrix.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: BUILD X MATRIX Build the full matrix of one of the X * cell

structures. This function builds the matrix X matrix from the input
cell structure X. X can be X DAT, X ERR, or X WEIGHT. The missing
entries are assumed to be zero, which means for X ERR the user
must post-process by switching zeros to Infs. Example: X dat =

sin([1,2,3,7,8,9;-1,-2,-3,-7,-8,-9]*pi/10),cos([4,5,6,7]*pi/10)*6;

X time index = [1,2,3,7,8,9],[4,5,6,7]; X data matrix =

build X matrix(X dat,X time index). See also PCAIM driver.

Input build_X_matrix(X,X_time_index)

• X
• X_time_index

Output X_matrix = build_X_matrix

• X_matrix

file:build_X_matrix.m
file:build_X_matrix.m

9.4. GENERAL 139

m-File Summary for create_G_index_proj.m
File Name: create_G_index_proj.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: CREATE G INDEX PROJ Create row index of surface-

projected Greens fcn. [X G INDEX,X G INDEX SPARSE] =

CREATE G INDEX PROJ(X DAT,X DAT SPARSE) Find row indexes
to the surface-projected Green’s functions based on the number of
datasets in X DAT, X DAT SPARSE and the number of time series per
dataset. Functionality to similar to that of CREATE G INDEX, execpt
that CREATE G INDEX worked on Green’s functions that have E, N, U
components of surface displacement regardless of observation type.
Example: PCAIM driver. See also CREATE G INDEX, PCAIM driver.

Input create_G_index_proj(X_dat,X_dat_sparse)

• X_dat
• X_dat_sparse

Output [X_G_index,X_G_index_sparse] = create_G_index_proj

• X_G_index
• X_G_index_sparse

file:create_G_index_proj.m
file:create_G_index_proj.m

140 CHAPTER 9. .M-FILES

m-File Summary for create_G_index.m
File Name: create_G_index.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: CREATE G INDEX Find an index to the rows of unprojected Green’s

functions. G INDEX VECTOR=CREATE G INDEX(G,POSITION) takes a
POSITION cell, containing the lon,lat of each observation points and
an unprojected (i.e. 3 directions per observation point) Greens func-
tion matrix ”G” (used to check consitency between the dimension
of G and POSITION but not really needed otherwise), send back
a cell G INDEX VECTOR such that G INDEX VECTOR{i} is an index
pointing towards the indices of G relative to the observation points
of dataset i. Example: PCAIM driver. See also get fault model,
PCAIM DRIVER.

Input create_G_index(G,position)

• G
• position

Output G_index_vector = create_G_index

• G_index_vector

file:create_G_index.m
file:create_G_index.m

9.4. GENERAL 141

m-File Summary for create_timeline.m
File Name: create_timeline.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: CREATE TIMELINE Create a universal timeline out of cell of data

epochs. [X TIME INDEX,TIMELINE]=CREATE TIMELINE(X TIME)

takes the sets of epochs listed in the cells of X TIME and combines
them into a universal timeline containing all the dates precisely
once and in chronological order. This universal timeline is store
in TIMELINE, and X TIME INDEX indexes each data set in this new
timeline. That is, for the ith dataset, TIMELINE(X TIME INDEX{i})
== X TIME{i} is always true. Example: X time =

{unique(round(rand(1,10)*10)),unique(round(rand(1,10)*10))};
[X time index,timeline]=create timeline(X time). See also
PCAIM DRIVER.

Input create_timeline(X_time)

• X_time

Output [X_time_index,timeline] = create_timeline

• X_time_index
• timeline

file:create_timeline.m
file:create_timeline.m

142 CHAPTER 9. .M-FILES

m-File Summary for dist_fcn.m
File Name: dist_fcn.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: DIST FCN Finds the Eucliean distance between two input pa-

rameters. Example: x1 = [0,0,0,0]; x2 = [1,1,1,1]; dist =

dist fcn(x1,x2). See also PCAIM driver.

Input dist_fcn(x1,x2)

• x1
• x2

Output dist = dist_fcn

• dist

file:dist_fcn.m
file:dist_fcn.m

9.4. GENERAL 143

m-File Summary for extract_from_cell.m
File Name: extract_from_cell.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: EXTRACT FROM CELL Extracts and concatenates matrices

from a cell object. [CONCATENATED CELL,CELL INDEX] =

EXTRACT FROM CELL(CELL OBJ) extracts matrices from CELL OBJ

and attempts first to concatenate them vertically (i.e.,
[CELL OBJ{1}; CELL OBJ{2}; ...]). If the number of columns is
not the same in each cell of CELL OBJ, EXTRACT FROM CELL tries to
concatenate them horizontally (i.e., [CELL OBJ{1}, CELL OBJ{2},
...]). If this fails, EXTRACT FROM CELL will throw an error.
Example: cell obj = cell(4,1); for i = 1:4 cell obji =

rand(randi(5,1,1),3); end [concatenated cell,cell index]

= extract from cell(cell obj). See also PCAIM DRIVER.

Input extract_from_cell(cell_obj)

• cell_obj

Output [concatenated_cell,cell_index] = extract_from_cell

• concatenated_cell
• cell_index

file:extract_from_cell.m
file:extract_from_cell.m

144 CHAPTER 9. .M-FILES

m-File Summary for find_disp_ratio.m
File Name: find_disp_ratio.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: FIND DISP RATIO Find the ratio of in-

put and output time units. DISP RATIO =

FIND DISP RATIO(INPUT DISP UNIT,OUTPUT DISP UNIT)

finds the correct multiplicative factor to con-
vert between the two displacement units. Exam-
ple: input disp unit = ’m’; output disp unit= ’mm’;

disp ratio=find disp ratio(input disp unit,output disp unit).
See also find time ratio, PCAIM driver.

Input find_disp_ratio(input_disp_unit,output_disp_unit)

• input_disp_unit
• output_disp_unit

Output disp_ratio = find_disp_ratio

• disp_ratio

file:find_disp_ratio.m
file:find_disp_ratio.m

9.4. GENERAL 145

m-File Summary for find_index_ndim.m
File Name: find_index_ndim.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: FIND INDEX NDIM Finds the index in th set of indexes for dimension

ndim. IND RANGE=FIND INDEX NDIM(INDEX IN,NDIM) calculates
the index in th set of indexes, where each index corresponds
to ndim entries. For example: 1:2 = FIND INDEX NDIM(1,2);
7:8 = FIND INDEX NDIM(4,2); 10:12 = FIND INDEX NDIM(4,3).
Examples: find index ndim(1,2), find index ndim(4,2),
find index ndim(4,3). See also PCAIM driver.

Input find_index_ndim(index_in,ndim)

• index_in
• ndim

Output ind_range = find_index_ndim

• ind_range

file:find_index_ndim.m
file:find_index_ndim.m

146 CHAPTER 9. .M-FILES

m-File Summary for find_time_ratio.m
File Name: find_time_ratio.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: FIND TIME RATIO Find the ratio of input and output time units.

TIME RATIO=FIND TIME RATIO(INPUT TIME UNIT,OUTPUT TIME UNIT)

finds the correct multiplicative factor to con-
vert between the two time units. Example:
input time unit = ’day’; output time unit= ’year’;

time ratio=find time ratio(input time unit,output time unit).
See also find disp ratio, PCAIM driver.

Input find_time_ratio(input_time_unit,output_time_unit)

• input_time_unit
• output_time_unit

Output time_ratio = find_time_ratio

• time_ratio

file:find_time_ratio.m
file:find_time_ratio.m

9.4. GENERAL 147

m-File Summary for get_date_string.m
File Name: get_date_string.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: GET DATE STRING Transform current time into a string. The pre-

cision of the time is given in the input format string as:
’yr’, ’month’, ’day’, ’hour’, ’min’, and ’sec’. Example:
get date string(’min’), gives ’2010 1 12 16 32’, when used the
12th of january 2010, at 4:32 pm.

Input get_date_string(format_string)

• format_string: ’yr’, ’month’, ’day’, ’hour’, or ’min’.

Output current_time_name = get_date_string

• current_time_name: String of the form ’year month day hour minute’.

file:get_date_string.m
file:get_date_string.m

148 CHAPTER 9. .M-FILES

m-File Summary for llh2localxy.m
File Name: llh2localxy.m File Type: function
Author: Unknown (Peter Cervelli?)

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description:

Input llh2localxy(llh,ll_org)

• llh
• ll_org

Output [xy] = llh2localxy

• [xy]

file:llh2localxy.m
file:llh2localxy.m

9.4. GENERAL 149

m-File Summary for local2llh.m
File Name: local2llh.m File Type: function
Author: Peter Cervelli

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: llh = local2llh(xy,origin) Converts from local coorindates to

longitude and latitude given the [lon, lat] of an origin. origin
should be in decimal degrees. Note that heights are ignored and that
xy is in km. Output is [lon, lat, height] in decimal degrees. This
is an iterative solution for the inverse of a polyconic projection.

Input local2llh(xy,origin)

• xy
• origin

Output llh = local2llh

• llh

file:local2llh.m
file:local2llh.m

150 CHAPTER 9. .M-FILES

m-File Summary for n_entries_calc.m
File Name: n_entries_calc.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: N ENTRIES CALC Calculates number of elements in each cell of

input var. N ENTRIES = N ENTRIES CALC(X TIME INDEX) returns
a numel(X TIME INDEX) vector filled with the number of elements
in each cell of the input cell structure, X TIME INDEX. Example:
X time index = {[1,2,3],[1,4,5,6],[4,5,7]}; n entries

= n entries calc(X time index). See also n epochs calc,
n entries edge calc, n tseries calc, PCAIM driver.

Input n_entries_calc(X_time_index)

• X_time_index

Output n_entries = n_entries_calc

• n_entries

file:n_entries_calc.m
file:n_entries_calc.m

9.4. GENERAL 151

m-File Summary for n_entries_edge_calc.m
File Name: n_entries_edge_calc.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: N ENTRIES EDGE CALC Calculates the edges of an integer entries vec-

tor. N ENTRIES is a vector of integers corresponding to the number
of rows or columns to be filled in a large matrix. N ENTRIES START

and N ENTRIES FINISH are the first and last indexes of each
of the subcomponents of the matrix to be filled. Example:
n entries = [1;5;3]; [n entries start,n entries finish]

= n entries edge calc(n entries). See also N ENTRIES CALC,
N EPOCHS CALC, N TSERIES CALC.

Input n_entries_edge_calc(n_entries)

• n_entries: a vector of integers corresponding to the number of rows or columns
to be filled in a large matrix.

Output [n_entries_start,n_entries_finish] = n_entries_edge_

calc

• n_entries_start: the first indexes of each of the subcomponents of the matrix to
be filled.
• n_entries_finish: the last indexes of each of the subcomponents of the matrix

to be filled.

file:n_entries_edge_calc.m
file:n_entries_edge_calc.m

152 CHAPTER 9. .M-FILES

m-File Summary for n_epochs_calc.m
File Name: n_epochs_calc.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: N EPOCHS CALC Calculate the total number of epochs in all datasets.

[N EPOCHS, UNIQUE EPOCHS] = N EPOCHS CALC(X TIME INDEX)

computes the number of unique epochs in cells of
X TIME INDEX, a cell structure containing vectors of in-
tegers corresponding to data acquisition epochs. Exam-
ple: X time index = {[1,2,3];[2,3,4,5,6,7];[9,10]};
[n epochs, unique epochs] = n epochs calc(X time index).
See also n entries calc, n entries edge calc, n tseries calc,
PCAIM driver.

Input n_epochs_calc(X_time_index)

• X_time_index

Output [n_epochs, unique_epochs] = n_epochs_calc

• n_epochs
• unique_epochs

file:n_epochs_calc.m
file:n_epochs_calc.m

9.4. GENERAL 153

m-File Summary for n_tseries_calc.m
File Name: n_tseries_calc.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: N TSERIES CALC Compute the number of time series per

dataset. [N TSERIES,N TSERIES VEC] = N TSERIES CALC(X DAT)

computes the number of time series in input datasets con-
tain in X DAT. N TSERIES is the total number of time series
between all datasets and N TSERIES VEC is a vector with
the number of time series in each dataset as its elements.
Example: X dat = [1,2,3,4;4,5,6,7],[1,1,1,17,6,3];

[n tseries,n tseries vec] = n tseries calc(X dat). See
also n epochs calc, n entries calc, n entries edge calc,
PCAIM driver.

Input n_tseries_calc(X_dat)

• X_dat

Output [n_tseries,n_tseries_vec] = n_tseries_calc

• n_tseries: the total number of time series between all datasets.
• n_tseries_vec: a vector with the number of time series in each dataset as its

elements.

file:n_tseries_calc.m
file:n_tseries_calc.m

154 CHAPTER 9. .M-FILES

m-File Summary for polyconic.m
File Name: polyconic.m File Type: function
Author: Unknown (Peter Cervelli?)

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: Polyconic Projection.

Input polyconic(Lat, Diff_long, Lat_Orig)

• Lat: Latitude (decimal seconds).
• Diff_long: Differential Longitude (decimal seconds) relative to Central Meridian.
• Lat_Orig: Latitude of Origin (decimal seconds).

Output [xy] = polyconic

• x: Distance from Central Meridian.
• u: Distance from Origin to Latitude.

file:polyconic.m
file:polyconic.m

9.4. GENERAL 155

m-File Summary for remove_char.m
File Name: remove_char.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: REMOVE CHAR Remove leading and trailing strings from

string. REMOVE CHAR(DIRTY STRING,STRING TO REMOVE) re-
moves leading and trailing copies of STRING TO REMOVE

from DIRTY STRING and returns the cleaned string as
CLEAN STRING. Example: dirty string = ’ Arthur

could not find his towel. ’; string to remove = ’ ’;

clean string=remove char(dirty string,string to remove).
See also PCAIM driver.

Input remove_char(dirty_string,string_to_remove)

• dirty_string
• string_to_remove

Output clean_string=remove_char

• clean_string

file:remove_char.m
file:remove_char.m

156 CHAPTER 9. .M-FILES

m-File Summary for rotate2d_center.m
File Name: rotate2d_center.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: ROTATE2D CENTER Rotate point in a Cartesian plane about a

given origin. [X1,Y1]=ROTATE2D CENTER(X0,Y0,XC,YC,ANGLE)

rotates the points with x-coordinates in X0 and y-coordinates
in Y0 by an amount ANGLE given in degrees about central point
(XC,YC). The output points are in the same order as the input
points with x-coordinates in X1, and y-coordinates in Y1. Ex-
ample: x0 = [2,1]; y0 = [0,1]; xc = 1; yc = 0; theta =

90; [x1,y1]=rotate2d center(x0,y0,xc,yc,theta). See also
polyconic, llh2localxy, local2llh.

Input rotate2d_center(x0,y0,xc,yc,theta)

• x0
• y0
• xc
• yc
• theta

Output [x1,y1]=rotate2d_center

• x1
• y1

file:rotate2d_center.m
file:rotate2d_center.m

9.4. GENERAL 157

m-File Summary for save_results.m
File Name: save_results.m File Type: script
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: Save the work space and variables given by the user. See script

test save results for an example. You can load the files using
load(file name,format), where format is for instance ’-mat’

(matlab binary format), or ’-ascii’ (ascii format).

Input save_results
options are:
• ’Name’,name: Option to give the name name of the .mat output file where the environ-
nement is saved. Default is ’date time’. This option needs to be immediately followed
by the name of the file given as a string.
• ’Directory’,directory_name: Option to give the directory directory name of

the .mat output file. Default is ’temp pcaim’. This option needs to be immediately
followed by the name of the directory given as a string.
• ’Variables2Save’,Variables: Option to save some specific variables given in the

cell of strings Variables. This option needs to be followed immediately with a cell of
strings, each of them containg the variables the user want to save.
• ’Format’,format: Format of the saved variable files given in format. See matlab

save command for possible format (e.g., ’Format’,’-ascii’).

Output NONE

file:save_results.m
file:save_results.m

158 CHAPTER 9. .M-FILES

m-File Summary for set_default_value.m
File Name: set_default_value.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: SET DEFAULT VALUE Announces the default value of string will be

set. VAR = SET DEFAULT VALUE(STRING,VALUE) displays to the user
than STRING is going to be set. If VALUE is a numeric object, its value
is also printed. Example: string= ’n comp’; value = 1; var =

set default value(string,value). Also see decomp srebro EM,
decomp srebro CG simultaneous.

Input set_default_value(string,value)

• string
• value

Output var = set_default_value

• var

file:set_default_value.m
file:set_default_value.m

9.4. GENERAL 159

m-File Summary for w_mean.m
File Name: w_mean.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version:
File Description: W MEAN Compute the weighted mean of a data matrix given a

weight matrix. MEANS = W MEAN(DATA,WEIGHT) computes the
weighted mean of each row of the matrix DATA according to the
individual weights from the matrix WEIGHT. Note that size(DATA)

== size(WEIGHT). MEANS = W MEAN(DATA,WEIGHT,ERROR FLAG)

computes the weighted mean of each row of the matrix DATA accord-
ing to the individual weights from the matrix 1./ABS(WEIGHT)^2
if ERROR FLAG == 1. If ERROR FLAG = 1, then this syntax
is the same as ommitting ERROR FLAG. Example: data =

[0,0,0,1,1,1,2,2,2;... 0,1,2,3,4,5,6,7,8]; weight =

[4,4,4,4,4,4,4,4,4;... 400,4,4,4,4,4,4,4,4]; error =

1./sqrt(weight); means weight = w mean(data,weight)

means error = w mean(data,error,1).

Input w_mean(data,weight,error_flag)

• data
• weight
• error_flag

Output means = w_mean

• means

file:w_mean.m
file:w_mean.m

160 CHAPTER 9. .M-FILES

9.5 Inversions

These scripts perform or support inversion on the decomposed data.

9.5. INVERSIONS 161

m-File Summary for fnnls.m
File Name: fnnls.m File Type: function
Author: L. Shure

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version:
File Description: FNNLS Non-negative least-squares. Adapted from NNLS of Math-

works, Inc. x = fnnls(XtX,Xty) returns the vector X that solves x

= pinv(XtX)*Xty in a least squares sense, subject to x >= 0. Dif-
ferently stated it solves the problem min ||y - Xx|| if XtX = X’*X

and Xty = X’*y. A default tolerance of TOL = MAX(SIZE(XtX)) *

NORM(XtX,1) * EPS is used for deciding when elements of x are less
than zero. This can be overridden with x = fnnls(XtX,Xty,TOL).
[x,w] = fnnls(XtX,Xty) also returns dual vector w where w(i)

< 0 where x(i) = 0 and w(i) = 0 where x(i) > 0. See also
NNLS and FNNLSb. L. Shure 5-8-87. Revised, 12-15-88,8-31-89 LS.
(Partly) Copyright (c) 1984-94 by The MathWorks, Inc. Modified by
R. Bro 5-7-96 according to Bro R., de Jong S., Journal of Chemo-
metrics, 1997, xx. Corresponds to the FNNLSa algorithm in the paper
http://newton.foodsci.kvl.dk/rasmus.html. Modified by S. Gunn 20-
9-97. Reference: Lawson and Hanson, ”Solving Least Squares Prob-
lems”, Prentice-Hall, 1974.

Input fnnls(XtX,Xty,tol)

• XtX
• Xty
• tol

Output [x,w] = fnnls

• x
• w

file:fnnls.m
file:fnnls.m

162 CHAPTER 9. .M-FILES

m-File Summary for inversion_type.m
File Name: inversion_type.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: INVERSION TYPE Perform the actual in-

version operation given options. S =

inversion type(D,A,N PATCHES,N COMP,INVERSION OPT) gives
the best solution to the inverse problem A*S = D given the number
of components N COMP and the options in INVERSION OPT. Example:
PCAIM driver. See also INVERT COMPONENTS, PCAIM DRIVER.

Input inversion_type(d,A,n_patches,n_comp,inversion_opt)

• d
• A
• n_patches
• n_comp
• inversion_opt

Output s=inversion_type

• s

file:inversion_type.m
file:inversion_type.m

9.5. INVERSIONS 163

m-File Summary for invert_components.m
File Name: invert_components.m File Type: function
Author: Andrew Kositsky and Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: INVERT COMPONENTS Set up and exe-

cute the inversion for slip at depth. L =

INVERT COMPONENTS(U,G PROJECTED DENSE,GAMMA,LAP,N COMP,OPTIONS)

finds a possibly constrained, regularized least-squares solution to
inverting U for dislocation at depth with Green’s functions
G projected dense. Sparse constraints can be added in options.
GAMMA is the smoothing of the Laplacian LAP, and N COMP is the
number of components in the model. Example: PCAIM driver. See
also PCAIM driver.

Input invert_components(U,G_projected_dense,gamma,Lap,n_comp,

options)

• U
• G_projected_dense
• gamma
• Lap
• n_comp
• options

Output L=invert_components

• L

file:invert_components.m
file:invert_components.m

164 CHAPTER 9. .M-FILES

m-File Summary for optimize_offsets_final.m
File Name: optimize_offsets_final.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: OPTIMIZE OFFSETS FINAL Take a dislocation model

and optimize offsets. [X DAT,FINAL OFFSETS] =

OPTIMIZE OFFSETS FINAL(X DAT,X ERR,G,L,S,V,X TIME INDEX)

finds the constant offsets for each timeseries required to min-
imize final model chi-squared. The amount of these offsets is
FINAL OFFSETS, and X DAT is returned with these offsets sub-
tracted. Example: PCAIM driver. See also invert components,
create G index all, PCAIM driver.

Input optimize_offsets_final(X_dat,X_err,G_projected_dense,L,

S,V,X_time_index)

• X_dat
• X_err
• G_projected_dense
• L
• S
• V
• X_time_index

Output [X_dat,final_offsets] = optimize_offsets_final

• X_dat
• final_offsets

file:optimize_offsets_final.m
file:optimize_offsets_final.m

9.5. INVERSIONS 165

m-File Summary for sparse_constraint_InSAR_calc.m
File Name: sparse_constraint_InSAR_

calc.m

File Type: function

Author: Andrew Kositsky
Maintainer: Hugo Perfettini

Contact E-mail: pcaim@gps.caltech.edu
Version: 1.0.0.0

File Description: SPARSE CONSTRANT INSAR CALC Find the sparse con-
straint matrix for the inversion step. SPARSE CONSTRAINT

= SPARSE CONSTRANT INSAR CALC(G InSAG INSAR, S, V,

INSAR TIME INDEX,N COMP) currently takes the Greens func-
tion G INSAR for a single InSAR image and combines it with S and
V at the times from INSAR TIME INDEX to give a linear equation
for the surface displacement of the InSAR image given our N COMP

model. Example: PCAIM driver. See also PCAIM driver.

Input sparse_constraint_InSAR_calc(G_InSAR, S, V, InSAR_time_

index,n_comp)

• G_InSAR
• S

• V

• InSAR_time_index

• n_comp

Output sparse_constraint = sparse_constraint_InSAR_calc

• sparse_constraint

file:sparse_constraint_InSAR_calc.m
file:sparse_constraint_InSAR_calc.m
file:sparse_constraint_InSAR_calc.m

166 CHAPTER 9. .M-FILES

9.6 Plotting and Statistics

These scripts perform plotting commands or compute statistics relating to the model.

9.6. PLOTTING AND STATISTICS 167

m-File Summary for build_slip_vectors.m
File Name: build_slip_vectors.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: Take the slip vector on the local fault axes, and transform it as a

unit vector in the geographical (east,north,up) reference frame.

Input build_slip_vectors(U_str,U_updip,fault_model)

• U_str
• U_updip
• fault_model

Output slip_vector=build_slip_vectors

• slip_vector

file:build_slip_vectors.m
file:build_slip_vectors.m

168 CHAPTER 9. .M-FILES

m-File Summary for change_xlim_ylim.m
File Name: change_xlim_ylim.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: CHANGE XLIM YLIM Increases the xlim/ylim of cur-

rent plot to include x, y. CHANGE XLIM YLIM(X,Y) sets
xlim to (min([X,xlim]),max([X,xlim])) and ylim to
(min([Y,ylim]),max([Y,ylim])).

Input change_xlim_ylim(x,y)

• x
• y

Output NONE

file:change_xlim_ylim.m
file:change_xlim_ylim.m

9.6. PLOTTING AND STATISTICS 169

m-File Summary for chi2_calc_all.m
File Name: chi2_calc_all.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description:

Input chi2_calc_all(X_dat,X_err,X_model,X_dat_sparse,X_err_

sparse,X_model_sparse)

• X_dat
• X_err
• X_model
• X_dat_sparse
• X_err_sparse
• X_model_sparse

Output [chi2,chi2_dense,chi2_sparse] = chi2_calc_all

• chi2
• chi2_dense
• chi2_sparse

file:chi2_calc_all.m
file:chi2_calc_all.m

170 CHAPTER 9. .M-FILES

m-File Summary for chi2_calc.m
File Name: chi2_calc.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description:

Input chi2_calc(X_data_matrix,X_error_matrix,X_model_matrix)

• X_data_matrix
• X_error_matrix
• X_model_matrix

Output [chi2] = chi2_calc

• chi2

file:chi2_calc.m
file:chi2_calc.m

9.6. PLOTTING AND STATISTICS 171

m-File Summary for create_predictions.m
File Name: create_predictions.m File Type: function
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: CREATE PREDICTIONS Convert an inversion into a dislocation model

[X PRED,X PRED SPARSE,X MODEL,X MODEL SPARSE,DISLOC CUM] =

CREATE PREDICTIONS(G,L,S,V,X TIME INDEX,X TIME INDEX SPARSE,

X G INDEX,X G INDEX SPARSE) converts the output from

INVERT COMPONENTS and translates it into

1. predictions (X PRED, X PRED SPARSE) for each data set and
observation location for each epoch regardless of whether data
was sampled there at that time (i.e. it predicts values even
where we don’t have data),

2. modeled values (X MODEL, X MODEL SPARSE) for each data set
and observation location at exactly the same epochs as the
original dataset (i.e. it models measurement values only where
we really have entries in X DAT(SPARSE) so X MODEL(SPARSE)

the same size as X DAT(SPARSE)), and

3. cumulative dislocation (DISLOC CUM) for the model, with the
first of dislocation assigned to have the value zero.

Example: PCAIM driver. See also INVERT COMPONENTS,
PCAIM DRIVER.

Input create_predictions(X_dat,X_dat_sparse,G_projected_

dense,G_projected_sparse,L,S,V,X_time_index,X_time_

index_sparse)

• X_dat
• X_dat_sparse
• G_projected_dense
• G_projected_sparse
• L
• S
• V

file:create_predictions.m
file:create_predictions.m

172 CHAPTER 9. .M-FILES

• X_time_index
• X_time_index_sparse

Output [X_pred,X_pred_sparse,X_model,X_model_sparse,slip_

cum] = create_predictions

• X_pred
• X_pred_sparse
• X_model
• X_model_sparse
• slip_cum

9.6. PLOTTING AND STATISTICS 173

m-File Summary for model_statistics.m
File Name: model_statistics.m File Type: script
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description:

Variables

file:model_statistics.m
file:model_statistics.m

174 CHAPTER 9. .M-FILES

m-File Summary for plot_coast.m
File Name: plot_coast.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: plot coast file from http://rimmer.ngdc.noaa.gov/mgg/coast/

getcoast.html (before download, make sure to choose ”Matlab”
in Coast Format options).

Input plot_coast(fault_model,origin,coast_file_name,options)

• fault_model
• origin
• coast_file_name
• options

Output NONE

file:plot_coast.m
file:plot_coast.m
http://rimmer.ngdc.noaa.gov/mgg/coast/getcoast.html
http://rimmer.ngdc.noaa.gov/mgg/coast/getcoast.html

9.6. PLOTTING AND STATISTICS 175

m-File Summary for plot_edge.m
File Name: plot_edge.m File Type: script
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description:

Variables

file:plot_edge.m
file:plot_edge.m

176 CHAPTER 9. .M-FILES

m-File Summary for plot_field.m
File Name: plot_field.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: plot the field given in field, using symbols and the fault model

given in fault model. The plot is centered at the origin given by
origin, and unit is km. options are listed below. See also the script
test plot field for an example.

Input plot_field(fault_model,origin,field,options)
options:
• ’Perspective’,view_angles: view angles is a 2D vector [azimuth,elevation]. De-
fault values are [0,90] (equivalent to view(2)). Type help view to get more details.
• ’ColorMap’,mycolormap: will use the colormap mycolormap.
• ’ColorScale’,Type: set the color scale. If Type=’Auto’, auto scale is assumed.

In case Type=[min field,max field], field will be plotted in the bound range
[min field,max field].
• ’FieldVector’,field_vector,vector_scale,vector_color,vector_width:

field vector is a 3*size(field,1) matrix (a 3D vector for each element of field). vector scale

is a scaling factor (change the length of the vectors), default value being 1. vector color

gives the color of the vector in matlab size. vector width sets the width of the vectors.
Note that all those options have to be given if the option ’FieldVector’ is active.
• ’ColorBar’: display the color bar.
• ’ColorBarLabel’,label: display the string label along the color bar axis (ex:

label=’slip (cm)’)
• ’MarkerArea’,marker_area: Set marker area. This is needed when calling func-

tion scatter3. Default value is 200.
• ’AutoScale’,auto_scale_factor: auto scale the figure using the bounds

auto scale factor*[min(x),max(x),min(y),max(y)], (x,y) being the coordinates of
the points.
• ’PatchSymbol’,symbol_type: plot the points using symbols given in symbol type

(color and type). Ex: ’PatchSymbol’,’ko’ to plot black circles.
• ’SymbolSize’,symbol_size: set the size of the symbols to symbol size.

Output NONE

file:plot_field.m
file:plot_field.m

9.6. PLOTTING AND STATISTICS 177

m-File Summary for plot_field_patches_rectangular.m
File Name: plot_field_patches_

rectangular.m

File Type: function

Author: Hugo Perfettini
Maintainer: Hugo Perfettini

Contact E-mail: pcaim@gps.caltech.edu
Version: 1.0.0.0

File Description: plot the field given in field, using rectangular patches and the fault
model given in fault model. The plot is centered at the origin given
by origin, and unit is km. options are listed below. See also the
script test plot patches rectangular for an example.

Input plot_field_patches_rectangular(fault_model,origin,

field,options)
options are identical to plot field. The only additional option is:
• ’Shading’,shading_type: Set the shading used by patch (shading type=’Faceted’,’Flat’,
or ’Interp’). Type help patch for more details.

Output NONE

file:plot_field_patches_rectangular.m
file:plot_field_patches_rectangular.m
file:plot_field_patches_rectangular.m

178 CHAPTER 9. .M-FILES

m-File Summary for plot_field_patches_point_source.m
File Name: plot_field_patches_point_

source.m

File Type: function

Author: Hugo Perfettini
Maintainer: Hugo Perfettini

Contact E-mail: pcaim@gps.caltech.edu
Version: 1.0.0.0

File Description: plot the field given in field, using triangular patches and the fault
model given in fault model. The plot is centered at the origin given
by origin, and unit is km. options are listed below. See also the
script test plot patches point source for an example.

Input plot_field_patches_point_source(fault_model,origin,

field,options)
options are identical to plot field patches rectangular.

Output NONE

file:plot_field_patches_point_source.m
file:plot_field_patches_point_source.m
file:plot_field_patches_point_source.m

9.6. PLOTTING AND STATISTICS 179

m-File Summary for plot_gps_stations.m
File Name: plot_gps_stations.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: plot gps stations at (long dense, lat dense). ex: options plot gps

= {’MarkerStyle’, ’^m’, ’MarkerSize’, 10, ’Name’, name,

[5,5]}; vectors. ’MarkerStyle’: Style (color and symbol type)
used to plot the GPS stations. ’MarkerSize’: Size of the marker.
If the option ’Name’ is given, the name of the stations given in
the string vector name will be plotted, and will be offset (in km)
from the position of the stations (long dense, lat dense) by the
amount dx and dy (dx: east offset, dy:north offset).

Input plot_gps_stations(long_dense,lat_dense,origin,options_

plot_gps)

• long_dense:
• lat_dense:
• origin: the center of the plot.
• options_plot_gps: options for plot gps stations.

Output NONE

file:plot_gps_stations.m
file:plot_gps_stations.m

180 CHAPTER 9. .M-FILES

m-File Summary for plot_gps_vectors.m
File Name: plot_gps_vectors.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: plot displacement vectors at (long dense,lat dense) for the model

X model and the data X dat. ex: options plot gps vectors =

{’VectorScale’,2,2,’ColorModel’,’b’,’g’,’ColorData’,’r’,’m’};
’VectorScale’: scale for the horizontal and vertical (in this very
order) vectors. ’ColorModel’: colors of the modeled horizontal and
vertical (in this order) displacements vectors. ’ColorData’: colors
of the horizontal and vertical (in this order) data displacements
vectors.

Input plot_gps_vectors(long_dense,lat_dense,X_model,X_dat,

data_type_string,origin,options_plot_gps_vectors)

• long_dense
• lat_dense
• X_model
• X_dat
• data_type_string
• origin: the center of the plot.
• options_plot_gps_vectors: options for plot gps vectors.

Output NONE

file:plot_gps_vectors.m
file:plot_gps_vectors.m

9.6. PLOTTING AND STATISTICS 181

m-File Summary for plot_L.m
File Name: plot_L.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description:

Input plot_L(L,ncomp,fault_model,origin,options_plot_L,coast_

file_name,options_plot_coast)

• L
• ncomp
• fault_model
• origin
• options_plot_L
• coast_file_name
• options_plot_coast

Output NONE

file:plot_L.m
file:plot_L.m

182 CHAPTER 9. .M-FILES

m-File Summary for plot_labeled_points.m
File Name: plot_labeled_points.m File Type: script
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description:

Variables

file:plot_labeled_points.m
file:plot_labeled_points.m

9.6. PLOTTING AND STATISTICS 183

m-File Summary for plot_model.m
File Name: plot_model.m File Type: script
Author: Andrew Kositsky

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description:

Variables

file:plot_model.m
file:plot_model.m

184 CHAPTER 9. .M-FILES

m-File Summary for plot_SAR.m
File Name: plot_SAR.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: plot SAR displacement (towards satellite) at

(long sparse,lat sparse) for the model SAR model

and the data SAR data. ex: options sparse =

{’Marker’,’o’,’LineWidth’,2,’SizeData’,200,’PlotType’,
’Absolute’,’MarkerArea’,400}; ’Marker’: Type of Marker for
the modeled points, the data being displayed as points within
the modeled points. ’LineWidth’: width ot the modeled symbol
edge. ’SizeData’: Size of the symbol used to plot the model.
’PlotType’: ’Absolute’ plots both the model and the data, while
’Residual’ plots the difference between data and model (in this
precise order). ’MarkerArea’: Area of the marker used to plot data
(the larger, the bigger).

Input plot_SAR(long_sparse,lat_sparse,SAR_model,SAR_data,

origin,options_sparse)

• long_sparse
• lat_sparse
• SAR_model
• SAR_data
• origin: the center of the plot.
• options_sparse: options for plot SAR.

Output NONE

file:plot_SAR.m
file:plot_SAR.m

9.6. PLOTTING AND STATISTICS 185

m-File Summary for plot_time_series.m
File Name: plot_time_series.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: plot the time series (data + model) with error bars. Xtime is the

time vector, Xmodel the prediction of the model, Xdata, the original
data with their errors given in Xerror. Displacements are given in
the (east,north,up) reference frame. The model will be plotted as a
continuous lines, while the data will be plotted using error bars. op-
tions plot time series: ex: options plot time series = {’Grid’,
’Name’, name, ’DispUnit’,observation unit, ’TimeUnit’,

time unit, ’Bounds’, [tmin,tmax], ’ModelPlotStyle’,

’b-’, ’LineWidth’, 2, ’DataPlotStyle’, ’ms’}; ’Grid’:
displays a grid (default = no grid). ’ModelPlotStyle’: this option
allows the user to change the line style (symbol, color, line style)
of the model. It needs to be followed by a string such as ’ob-’.
Default value is ’b.-’ (blue dots connected with a continous line).
’LineWidth’: line width of the model plot. The line width needs
to be immediately given after ’LineWidth’. Default value is 1.
’DataPlotStyle’: this option allows the user to change the plotting
style (symbol and color) of the data, plotted as error bars. It needs
to be followed by a string such as ’mo’. Default value is ’ro’ (red
circles). ’TimeUnit’: to plot the time vector with its proper unit,
given by the field immediately following ’TimeUnit’. Any string
will be plotted as it is, meaning that you could use ’year’, ’yr’,
’day’, ’s’, ’second’, ’century’, ’Bounds’, [tmin,tmax]: to
specify the limit of the time axis, an autoscale being done on the
vertical axis (displacements) using the data (and not the model). If
this option is empty, autoscale is performed.

Input plot_time_series(Xtime,Xmodel,Xdata,Xerror,options_

plot_time_series)

• Xtime
• Xmodel
• Xdata

file:plot_time_series.m
file:plot_time_series.m

186 CHAPTER 9. .M-FILES

• Xerror
• options_plot_time_series

Output NONE

9.6. PLOTTING AND STATISTICS 187

m-File Summary for plot_V.m
File Name: plot_V.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: Plot the first ncomp eigenvectors V of the PCAIM de-

composition. options plot V: ex: options plot V =

{’Grid’,’Time’,X time{1},’TimeUnit’,time unit,’LineWidth’,

2,’LineStyle’,’o-r’}; ’Grid’: displays a grid (default=no grid).
’Time’: to plot a given time vector (default is the index of the
V’s). After time, the user needs to give the time vector, which size
is supposed to be compatible with the size of V (e.g., size(V,1)

= numel(time vector). ’LineStyle’: to change LineStyle, i.e.,
symbols, lines, colors. This option needs to be immediately followed
by a string giving the line style (ex: ’ko-’). Same syntax as
matlab plot. Default values are ’bo-’ (blue circles connected by
a continuous line). ’LineWidth’: to change the width of the lines.
The next entry needs to be the line width (ex: 2.5). Default value
is 1. ’TimeUnit’: to plot the time vector with its proper unit, given
by the field immediately following ’TimeUnit’. Any string will be
plotted as it is, meaning that you could use ’year’, ’yr’, ’day’,
’s’, ’second’, ’century’,...

Input plot_V(V,ncomp,options_plot_V)

• V
• ncomp
• options_plot_V

Output NONE

file:plot_V.m
file:plot_V.m

188 CHAPTER 9. .M-FILES

m-File Summary for slip_potency_calc.m
File Name: slip_potency_calc.m File Type: function
Author: Hugo Perfettini

Maintainer: Hugo Perfettini
Contact E-mail: pcaim@gps.caltech.edu

Version: 1.0.0.0
File Description: compute the slip potency as a function of time slip pot(t) =

Sum {j=1,npatch}(|slip(j,t)| x area(j)).

Input slip_potency_calc(slip,area)

• slip
• area

Output slip_pot=slip_potency_calc

• slip_pot

file:slip_potency_calc.m
file:slip_potency_calc.m

9.7. TESTING SCRIPTS 189

9.7 Testing Scripts

There are a number of testing scripts for easily probing the interaction of scripts and the
input variables. These are not be documented here.

Chapter 10

Variables

• A The design matrix for inversion.
• all_position cell array containing all positions of the observation points on the

surface.
• alpha 2nd order coefficient in the step-size for the exact conjugate gradient method

for χ2 calculations.
• angle rotation angle before meshing.
• area area of a patch in km2.
• basic centering method that uses the weighted mean.
• beta 1st order coefficient in the step-size for the exact conjugate gradient method

for χ2 calculations.
• cell_index
• G_index_vector
• cell_obj
• center_function
• cGPS3_stations is a cell structure of strings listing the allowed stations. Case

sensitive.
• chi2_dense vector containing contribution to the χ2 from each dense dataset in a

separate element.
• chi2_modified calculation of chi2 using X weight instead of X error.
• chi2_sparse vector containing contribution to the χ2 from each sparse dataset in

a separate element.
• chi2 χ2 of a dataset or of entire scenario.
• clean_string a returned string with the desire characters removed.

191

192 CHAPTER 10. VARIABLES

• coast_file_name
• concatenated_cell the entries of a cell structure concatenated to form a giant

matrix or vector.
• d data vector for solving the linear inversion problem.
• data_file: full path of file containing dataset information locations.
• data_info_sparse information about the sparse datasets (see data info{i}).
• data_info{i}: cell containing informations about dataset i. For cGPS: data info{i}{1}{j}:

name of station j within dataset i data info{i}{2}{j}: path of gps file of station j within
dataset i.
• data_type_sparse data type of about the sparse datasets (see data type{i}).
• data_type_string data type of a dataset as a string rather than a cell.
• data_type{i}: type of data considered (e.g., cGPS3, SAR,...) in cell format.
• data data matrix of which we desire to find the means.
• date_output: same as the input date but in decimal years.
• date: a date in the format: YYYY/MM/DD <seperater> HH:MI:SS where YYYY is

the year, MM is the month, DD is the day, HH is the hour, MI is the minute, SS is the decimal
seconds (arbitrary number of digits after the first two if decimal is needed.)
• decomp_function the function to be used for decomposition
• decomp_options the options to be used for decomposition
• dfunc_options the options to be used for the derivative of the objective function

during the conjugate gradient algorithm.
• dfunc name of the derivative of the objective function to be used
• Diff_long: Differential Longitude (decimal seconds) relative to Central Meridian.
• dip dip angle of a fault element.
• directory a directory path.
• dirty_string string with undesired characters still present.
• disp_ratio ratio of the input (current) to output (desired) units for displacement.
• elapsed_time total time elapsed since the beginning of a decomposition step.
• error_flag a Boolean flag to designate if there is an X err matrix as an input.
• F current function value during the conjugate gradient method scripts.
• fault_model a large matrix that completely describes the current fault model.

Defined in get fault model.m

• field a vector field for plotting.
• final_offsets the final constant offsets for each time-series to minimize the un-

explained χ2.
• first_epoch is a scalar denoting the first allowed epoch in the timeseries.
• fprime_out the derivative of the objective function either in the original basis or

orthogonal basis (if applicable).

193

• ftol the function tolerance for the conjugate gradient algorithm.
• func_options options for the objective function during the conjugate gradient

algorithm.
• func objective function used during the conjugate gradient algorithm.
• G_index_vector cell array that indexes G based on the size of the original input

datasets in X dat.
• G_InSAR the Green’s functions for an InSAR image.
• G_projected_sparse the projected Green’s functions for a sparse constraint.
• G all of the unprojected Green’s functions.
• gamma 0th order coefficient in the step-size for the exact conjugate gradient method

for χ2 calculations.
• GreensExternalFcnDir path to the binary of the Green’s function to be used.
• iedge indexes of the “no slip edge patches” on a fault surface.
• iflag Boolean flag to indicate whether or not a string has been found.
• index_in number of n-tuples in we wish to go for calculating indexes.
• index general indexing variable.
• index2file conversion vector from an input format matrix to the internal format

matrix (switches columns).
• input_disp_unit displacement unit of the input data source.
• input_file file containing the initial set of points of the smooth surface. When

provided, index2file(1), index2file(2) and index2file(3) are the column numbers
of input file corresponding to the east, north and updip coordinates. If not provided,
index2file has a default value of [1 2 3] (i.e., long, lat, and updip is assumed).
input file can also be given directly as a 3d vector.
• input_list_file is a string containing the absolute path of the file containing a

list of information on all the data input sources for this scenario.
• input_list: correctly formatted string from the data file of the previous script.

Format is: Dataset Name | Data Type | Path/To/Dataset/File | Time Unit | Length
Unit.
• InSAR_time_index time indexes for InSAR image only.
• interp_method interpolation method for fault formation.
• inversion_opt options for the inversion step.
• iter_max is the maximum number of iterations of the linear decomposition algo-

rithm.
• iter current iteration number.
• L principal slip distributions.
• lambda weighting of the smoothing parameter for fault surface construction.
• Lap matrix form of the discrete Laplacian.

194 CHAPTER 10. VARIABLES

• last_epoch is a scalar denoting the last allowed epoch in the timeseries.
• lat_dense latitude of the dense time-series
• Lat_Orig: Latitude of Origin (decimal seconds).
• lat_sparse latitude of the sparse time-series
• Lat: Latitude (decimal seconds).
• lat latitude in decimal seconds
• length_unit is a string denoting what length unit (e.g. ‘mm’, ‘cm’) will be used as

fundamental to the analysis. All length data and errors will be converted into this unit.
• length length of a rectangular fault patch.
• long_dense longitude of dense time-series.
• long_sparse longitude of sparse time-series.
• long longitude.
• los_file path to the line-of-sight file for an InSAR image (or other directional

data)
• mean_function function to find the mean estimates.
• mean_offset_fine fine estimate of the mean offset necessary to center the datasets.
• mean_offsets gross estimate of the mean offset necessary to center the datasets

using the weighted mean.
• mean_options options to be used during the calculation of the mean estimates.
• means the mean values of matrix rows from w mean

• n_comp_mean number of components to be used for estimating the means.
• n_comp is a positive integer specifying the number of components for the decompo-

sition of the data matrix into linear components.
• n_entries_finish: the last indexes of each of the subcomponents of the matrix

to be filled.
• n_entries_start: the first indexes of each of the subcomponents of the matrix to

be filled.
• n_entries number of time-series in each dataset as a vector.
• n_epochs total number of epochs in all datasets.
• N_nearest number of nearest patches to use in Laplacian computations.
• n_patches total number of patches in the fault model.
• n_tseries_vec: a vector with the number of time series in each dataset as its

elements.
• n_tseries: the total number of time series between all datasets.
• N number of nearest patches to use in Laplacian computations.
• ncomp number of components for linear decomposition.
• ndim total dimension of some matrix.
• normal_vect: normal to the fault base vector for each triangle.

195

• nx number of triangles along the direction given by angle.
• ny number of triangles along the direction perpendicular to the direction given by

angle.
• observation_unit: output observation units (m,cm,mm).
• options_make_fault_model options for fault model construction.
• options_plot_coast options for plotting the coast on final figures.
• options_plot_gps_vectors: options for plot gps vectors.
• options_plot_gps: options for plot gps stations.
• options_plot_L options for plotting the principal slip distributions
• options_plot_time_series options for plotting time series
• options_plot_V options for plotting the principal time functions
• options_sparse: options for plot SAR.
• options general options for some routine.
• origin: the center of the plot or origin of local coordinate frame.
• output_disp_unit string containing the target displacement unit
• outputfile_okada complete name (including path) of the output file corresponding

to the fault model using Okada’s format. This file is used for computation of Green
functions. If outputfile pcaim and outputfile okada are leave empty, no output is
written.
• outputfile_pcaim complete name (including path) of the output file corresponding

to the fault model using the PCAIM code triangular format.
• p power for weighted mean calculation.
• position{i}: cell containing the longitude and latitude vectors of dataset i (e.g.,

the long and lat of GPS stations, longitude=position{i}(:,1);latitude=position{i}(:,2)).
• r direction of search during conjugate gradient algorithm.
• rake vector containing rake angle for each patch.
• rectangular_fault_flag flag to indicate whether or not the fault model is com-

posed of rectangular elements.
• S weights for each component, equivalent to singular values for SVD.
• s slip at depth as a solution to the linear inversion problem s = A\d.
• SAR_data data variable for InSAR data loading procedure and plotting.
• SAR_model model variable for InSAR plotting.
• scenario_name is a string denoting the directory in which the models are to be

saved and data is to be found.
• separator: a character that separates the year-month-day from the hour-minute-

second
• sig_time: number of significant digits after the decimal point when rounding

epochs.

196 CHAPTER 10. VARIABLES

• slip_pot total slip potency, a scaler.
• slip_vector the vectors for plotting slip in geographical coordinates or local EN

coordinates.
• slip magnitude of slip on each patch.
• smooth_param value of the smoothing parameter (e.g., 1e2). The higher, the smoother

the surface. When smooth param → +∞, the smoothing surface reduces to a plane.
• sparse_constraint matrix to augment the design matrix during the inversion step

for including sparse data in the inversion.
• stn_name is a cell-structure where each cell contains a cell structure of strings of

the names of the stations in X_dat for data types that have station names. In particular,
the ith cell of the kth cell in stn_name corresponds to the ith row of the kth cell of X_err
and X_dat.
• strike_vect: along strike base vector for each triangle.
• strike strike angle for each individual patch or mean strike angle the fault as a

whole. In degrees.
• string_to_remove string that should be removed from input variables.
• string string to be found in some cell.
• t1 vertex 1 of a triangular patch
• t2 vertex 2 of a triangular patch
• t3 vertex 3 of a triangular patch
• theta angle for rotation.
• time_unit: the time unit to be used internally during calculations.
• timeline is a vector where the jth entry is the jth unique epoch in chronologically

order from any of the data sources.
• tol is the convergence tolerance for the linear decomposition function.
• U_str slip in the strike-slip direction.
• U_updip slip in the dip-slip direction.
• u: Distance from Origin to Latitude.
• U is a m × N matrix representing the spatial function of the linear decomposition

X ≈ USV t. The jth column is the spatial function of the jth component.
• unique_epochs total number of unique epochs.
• updip_vect: updip base vector for each triangle.
• V is n × N matrix representing the temporal function of the linear decomposition

X ≈ USV t. The jth column is the temporal function of the jth component.
• value input of default value to be set for some parameter.
• vect_tect 3d tectonic vector given in the geographical reference frame. Used to

find the rake of the triangular patches.
• vertices: vertices of the triangle given by [t1,t2,t3].

197

• w w(i) < 0 where x(i) = 0 and w(i) = 0 where x(i) > 0, from fnnls
• weight weight matrix for use in w mean

• width width of a rectangular fault element.
• X_dat{i}(k,l): observation for set i, time series k, at epoch X time{i}(l).
• X_dat is a cell-structure where each cell contains a matrix of the imported data

from a different data source (cGPS3, cGPS2, InSAR, etc.). Each row is one “station”
(e.g. for cGPS3) or “location” (e.g. each pixel for InSAR data), and each column is the
epoch for each station in that cell.
• X_data_matrix matrix version ofX dat.
• X_err_sparse same as X err, but only contains sparse data
• X_err{i}: same as X dat, but contains the 1-sigma standard errors for the corre-

sponding elements.
• X_error_matrix matrix version ofX err.
• X_G_index_sparse integers indexing G for entries in X SOMETHING sparse

• X_G_index integers indexing G for entries in X SOMETHING

• X_matrix general matrix version of X SOMETHING.
• X_model_matrix matrix version of X model.
• X_model_sparse model of the surface displacement field at all epochs if and only

if was original data there, only for sparse data.
• X_model model of the surface displacement field at all epochs if and only if was

original data there.
• X_pred_sparse predictions of the surface displacement field at all epochs regardless

of whether there was original data there or not, only for sparse data.
• X_pred predictions of the surface displacement field at all epochs regardless of

whether there was original data there or not.
• X_rescale cell array of doubles or matrixes for rescaling the errors on any datum

in any datasets.
• X_time_index_sparse X time index for sparse datasets only.
• X_time_index is a cell structure where the kth cell is an index to X_time from

timeline. In other words, the kth cell is vector of the same size as the kth cell of X time

such that timeline(X_time_index{k}{j})=X_time{k}{j}.
• X_time{i}: cell containing the time vector of set #i.
• X_time is a cell-structure where each cell contains a vector of the imported epochs

from a different data source (cGPS3, cGPS2, InSAR, etc.). The jth entry of the vector
in the kth cell corresponds to the jth column of the kth cell of X_err and X_dat.
• X_weight is a cell-structure where each cell contains a matrix of the imposed mul-

tiplicative modifications to the weight of each data point from a different data source
(cGPS3, cGPS2, InSAR, etc.). These imposed modifications allow the user to manually

198 CHAPTER 10. VARIABLES

reweight portions of the data which his/her geophysical intuition suggests are being either
over or under fit. Note this manual reweighting will nearly always worsen the resulting
χ2 of the decomposition. You can think of this as a way to add a “fudge factor” to the
decomposition and inversion.
• x: first variable representing x coordinate (typically East), or current guess in

conjugate gradient algorithm.
• X a general X SOMETHING matrix.
• x0 second variable representing x coordinate (typically East).
• x1 third variable representing x coordinate (typically East).
• xc central x (typically East) coordinate, either for rotation or the center of a patch.
• xcell target cell for finding a string.
• Xdata single matrix from X dat.
• Xerror single matrix from X err.
• xfind string to find inside a cell array.
• xi fourth variable representing x coordinate (typically East).
• Xmodel single matrix from X model.
• Xtime single matrix from X time.
• XtX “X transpose times X” for fnnls routine.
• Xty “X transpose times data vector” for fnnls routine.
• y first variable representing y coordinate (typically North).
• y0 second variable representing y coordinate (typically North).
• y1 third variable representing y coordinate (typically North).
• yc central y (typically North) coordinate, either for rotation or the center of a patch.
• yi fourth variable representing y coordinate (typically North).
• z first variable representing depth.
• zc central depth coordinate, either for rotation or the center of a patch.
• zi second variable representing depth.

Bibliography

[CAS+08] M. Chlieh, J. P. Avouac, K. Sieh, D. H. Natawidjaja, and John Galetzka. Het-
erogeneous coupling of the sumatran megathrust constrained by geodetic and
paleogeodetic measurements. JOURNAL OF GEOPHYSICAL RESEARCH,
113:B05305, 2008.

[CBR+09] D.V. Chandrasekhar, R. Bürgmann, C.D. Reddy, P.S. Sunil, and D.A Schmidt.
Weak mantle in NW India probed by geodetic measurements following the
2001 Bhuj earthquake. Earth Planet. Sci. Lett., 2009.

[Coh99] S. C. Cohen. Numerical models of crustal deformation in seismic zones. Adv.
Geophys., 41:134–231, 1999.

[HSA+06] Y. J. Hsu, M. Simons, J. P. Avouac, J. Galetzka, K. Sieh, M. Chlieh, D. Nataw-
idjaja, L. Prawirodirdjo, and Y. Bock. Frictional afterslip following the 2005
Nias-Simeulue earthquake, Sumatra. Science, 312(5782):1921–1926, 2006.

[Hui91] Geertjan Huiskamp. Difference formulas for the surface Laplacian on a trian-
gulated surface. Journal of Computational Physics, 95(2):477 – 496, 1991.

[Ise04] Arieh Iserles. Numerical Analysis of Differential Equations. Cambridge Uni-
versity Press, 2004.

[KA10] Andrew P. Kositsky and Jean-Philippe Avouac. Inverting geodetic time-series
with a principal component analysis-based inversion method (PCAIM). Jour-
nal of Geophysical Research: Solid Earth, 2010.

[Kin05] Martin King. Matlab m-files for multidimensional nonlinear conjugate gradi-
ent method, 2005. http://users.ictp.it/~mpking/cg.html (now defunct).

199

http://users.ictp.it/~mpking/cg.html

200 BIBLIOGRAPHY

[KY06] M. Kawamura and K. Yamaoka. Spatiotemporal characteristics of the dis-
placement field revealed with principal component analysis and the mode-
rotation technique. Tectonophysics, 419:55–73, 2006.

[KY09] M. Kawamura and K. Yamaoka. Temporal relationship between the 2000
Miyake-Kozu seismovolcanic activity and the 2000 Tokai slow-slip event.
Tectonophysics, pages 45–59, 2009.

[LR02] Roderick Little and Donald Rubin. Statistical Analysis with Missing Data.
Wiley-Interscience, 2nd edition, 2002.

[Mea07] Brendan J. Meade. Algorithms for the calculation of exact dis-
placements, strains, and stresses for triangular dislocation elements
in a uniform elastic half space. Comput. Geosci., 33(8):1064–1075,
2007. http://summit.fas.harvard.edu/~meade/meade/Publications_

files/meadetriangulardislocations2007.pdf.

[Mog58] Kiyoo Mogi. Relations between the eruptions of various volcanoes and the
deformations of the ground surfaces around them. Bull. Earthq. Res. Inst.,
36, 1958.

[Oka85] Y. Okada. Surface deformation to shear and tensile faults in a half space.
Bull. Seism. Soc. Am., 75:1135–1154, 1985.

[Oka92] Yoshimitsu Okada. Internal deformation due to shear and tensile faults in
a half-space. Bulletin Of The Seismological Society Of America, 82(2):1018–
1040, 1992.

[SJ03] N. Srebro and T. Jaakkola. Weighted low-rank approximations. In Twen-
tieth International Conference on Machine Learning, 2003. http://ttic.

uchicago.edu/~nati/Publications/SrebroJaakkolaICML03.pdf.

[Sre] Nathan Srebro. Re: Weighted low-rank approximations request. Personal
Correspondence to Andrew Kositsky. Sept. 10, 2009.

[XY89] X. Xie and Z. Yao. A generalized reflection-transmission coefficient matrix
method to calculate static displacement field of a dislocation source in a strat-
ified half-space. Chin. J. Geophys., pages 191–205, 1989.

http://summit.fas.harvard.edu/~meade/meade/Publications_files/meadetriangulardislocations2007.pdf
http://summit.fas.harvard.edu/~meade/meade/Publications_files/meadetriangulardislocations2007.pdf
http://ttic.uchicago.edu/~nati/Publications/SrebroJaakkolaICML03.pdf
http://ttic.uchicago.edu/~nati/Publications/SrebroJaakkolaICML03.pdf

Appendix A

Downloading Coast Files

You can download the appropriate coastline files from http://rimmer.ngdc.noaa.gov/

mgg/coast/getcoast.html. Instructions for using these within your plots with the code
is below.

1. Download the appropriate coastline information.

a) Input the upper latitude, westernmost longitude, easternmost longitude and
lower latitude for your desired coast region.

b) Choose any coastline database. We suggest the default (“World Vector Shore-
line”)

c) Choose anything for “Compression method for extracted ASCII data”

d) Choose “Matlab” for “Coast Format options”

e) Choose “GMT Plot” for “Coast Preview options”

f) Click on the “SUBMIT Extract the Coastline File” button.

2. Expand the resulting file if necessary, and save with a reasonable name so the
user can remember what it is later (e.g. Nias_coast.dat) and put it inside the
appropriate scenario folder.

3. Within the plotting_commands_file for the target scenario, replace the coast_

file_name with the path of the new coast file.

201

http://rimmer.ngdc.noaa.gov/mgg/coast/getcoast.html
http://rimmer.ngdc.noaa.gov/mgg/coast/getcoast.html

Appendix B

Derivatives of χ2

In order to implement the conjugate gradient method to find a local minimum of the χ2

function, we need to know the derivative. Since taking derivatives numerically is usually
computationally intensive compared to applying an analytical formula for relatively sim-
ple functions, we here analytically find the derivatives of χ2 as a function of the spatial
basis functions U , the temporal basis functions V , and when applicable, the timeseries
means M .

We will pick each of the elements of the vectors independently, and we consider χ2 to
be a function of U and V . Since there are no boundary points in the domain of χ2, χ2

has a lower bound (χ2(U, V) 6< 0,), and for any U, V → ∞ where the other is non-zero,
χ2 →∞ it follows from calculus that χ2 must have a non-zero number of global minima.
Thus at a global minimum, ∂χ2

∂u(l,k)
= ∂χ2

∂v(i,k)
= 0 for all i, k. This does not guarantee there

are no local minima, but in practice we have nearly always reached the same minimum
given random starting conditions, enough iterations and a small enough tolerance.

χ2(U, V)

χ2 =
∑
i,j

(∑r
k=1[UikVjk]−Xij

σij

)2

(B.1)

203

204 APPENDIX B. DERIVATIVES OF χ2

Derivative of χ2 with respect to U

∂χ2

∂Ulm
=

∂
∑

i,j

(∑r
k=1 UikVjk−Xij

σij

)2
∂Ulm

(B.2)

=
∑
i,j

∂
(∑r

k=1 UikVjk−Xij

σij

)2
∂Ulm

(B.3)

= 2
∑
i,j

(∑r
k=1 UikVjk −Xij

σij

) ∂
(∑r

k=1 UikVjk−Xij

σij

)
∂Ulm

(B.4)

= 2
∑
i,j

(∑r
k=1 UikVjk −Xij

σij

)
δkm∂ (

∑r
k=1 UikVjk)

σij∂Ulm
(B.5)

= 2
∑
i,j

(∑r
k=1 UlkVjk −Xij

σij

)
δli∂ (UimVjm)

σij∂Ulm
(B.6)

= 2
∑
j

(∑r
k=1 UlkVjk −Xlj

σ2
lj

)
Vjm (B.7)

205

Derivative of χ2 with respect to V

∂χ2

∂Vlm
=

∂
∑

i,j

(∑r
k=1 UikVjk−Xij

σij

)2
∂Vlm

(B.8)

=
∑
i,j

∂
(∑r

k=1 UikVjk−Xij

σij

)2
∂Vlm

(B.9)

= 2
∑
i,j

(∑r
k=1 UikVjk −Xij

σij

) ∂
(∑r

k=1 UikVjk−Xij

σij

)
∂Vlm

(B.10)

= 2
∑
i,j

(∑r
k=1 UikVjk −Xij

σij

)
δkm∂ (

∑r
k=1 UikVjk)

σij∂Vlm
(B.11)

= 2
∑
i,j

(∑r
k=1 UlkVjk −Xij

σij

)
δlj∂ (UimVjm)

σij∂Vlm
(B.12)

= 2
∑
j

(∑r
k=1 UlkVjk −Xlj

σ2
lj

)
Uim (B.13)

χ2(U, V,M), V has zero mean

χ2
m =

∑
i,j

(∑r
k=1[UikVjk]−Xij +Mi

σij

)2

, for all k
n−1∑
j=1

(Vjk) = −Vnk (B.14)

206 APPENDIX B. DERIVATIVES OF χ2

Derivative of χ2
m with respect to M

∂χ2
m

∂Ml

=
∂
∑

i,j

(∑r
k=1 UikVjk−Xij+Mi

σij

)2
∂Ml

(B.15)

=
∑
i,j

∂
(∑r

k=1 UikVjk−Xij+Mi

σij

)2
∂Ml

(B.16)

= 2
∑
i,j

(∑r
k=1 UikVjk −Xij +Mi

σij

) ∂
(∑r

k=1 UikVjk−Xij+Mi

σij

)
∂Ml

(B.17)

= 2
∑
j

(∑r
k=1 UlkVjk −Xlj +Ml

σ2
lj

)
∂Ml

∂Ml

(B.18)

= 2
∑
j

(∑r
k=1 UlkVjk −Xlj +Ml

σ2
lj

)
(B.19)

Derivative of χ2
m with respect to U

∂χ2
m

∂Ulm
=

∂
∑

i,j

(∑r
k=1 UikVjk−Xij+Mi

σij

)2
∂Ulm

(B.20)

=
∑
i,j

∂
(∑r

k=1 UikVjk−Xij+Mi

σij

)2
∂Ulm

(B.21)

= 2
∑
i,j

(∑r
k=1 UikVjk −Xij +Mi

σij

) ∂
(∑r

k=1 UikVjk−Xij

σij

)
∂Ulm

(B.22)

= 2
∑
i,j

(∑r
k=1 UikVjk −Xij +Mi

σ2
ij

)
δliδkm∂ (

∑r
k=1 UikVjk)

∂Ulm
(B.23)

= 2
∑
j

(∑r
k=1 UlkVjk −Xlj +Ml

σ2
ij

)
∂ (UlmVjm)

∂Ulm
(B.24)

= 2
∑
j

(∑r
k=1 UlkVjk −Xlj +Ml

σ2
lj

)
Vjm (B.25)

207

Derivative of χ2
m with respect to V

∂χ2
m

∂Vlm
=

∑
i,j

∂
(∑r

k=1 UikVjk−Xij+Mi

σij

)2
∂Vlm

(B.26)

= 2
∑
i,j

(∑r
k=1 UikVjk −Xij +Mi

σij

) ∂
(∑r

k=1 UikVjk−Xij

σij

)
∂Vlm

(B.27)

= 2
∑
i,j

(∑r
k=1 UikVjk −Xij +Mi

σ2
ij

)
∂ (
∑r

k=1 UikVjk)

∂Vlm
(B.28)

= 2
∑
i

n∑
j=1

(∑r
k=1 UikVjk −Xij +Mi

σ2
ij

)
∂ (
∑r

k=1 UikVjk)

∂Vlm
(B.29)

= 2
∑
i

[
n−1∑
j=1

(∑r
k=1 UikVjk −Xij +Mi

σ2
ij

)
∂ (
∑r

k=1 UikVjk)

∂Vlm
+ (B.30)(∑r

k=1 UikVnk −Xin +Mi

σ2
in

)
∂ (
∑r

k=1 UikVnk)

∂Vlm

]
= 2

∑
i

[
n−1∑
j=1

(∑r
k=1 UikVjk −Xij +Mi

σ2
ij

)
∂ (
∑r

k=1 UikVjk)

∂Vlm
+ (B.31)

(∑r
k=1 UikVnk −Xin +Mi

σ2
in

) ∂
(∑r

k=1 Uik

[
−∑n−1

j=1 Vjk

])
∂Vlm

= 2

∑
i

[
n−1∑
j=1

(∑r
k=1 UikVlk −Xil +Mi

σ2
il

)
∂ (
∑r

k=1 δl,jδm,kUikVjk)

∂Vlm
+ (B.32)

(∑r
k=1 UikVnk −Xin +Mi

σ2
in

)
δl,j

∂
(∑r

k=1 δl,jδm,kUik

[
−∑n−1

j=1 Vjk

])
∂Vlm

= 2

∑
i

[(∑r
k=1 UikVlk −Xil +Mi

σ2
il

)
Uim+ (B.33)(∑r

k=1 UikVnk −Xin +Mi

σ2
in

)
∂ (−UimVlm)

∂Vlm

]
= 2

∑
i

[(∑r
k=1 UikVlk −Xil +Mi

σ2
il

)
Uim −

(∑r
k=1 UikVnk −Xin +Mi

σ2
in

)
Uim

]
= 2

∑
i

[(∑r
k=1 UikVlk −Xil +Mi

σ2
il

−
∑r

k=1 UikVnk −Xin +Mi

σ2
in

)
Uim

]
(B.34)

Appendix C

Analytical Minimum

This appendix analytically solves the problem of finding the minimum along a fixed
direction of search from a fixed location for two specific objective functions, χ2 and χ2

m

from Equations (B.1, B.14). This will tell us how large of a step d we should make in the
direction ~r from our current position of U0V t0(+M0), where +M0 is only included in the
χ2
m case.. We will do this by first finding the minimum of χ2

m and then showing that we
have also calculated the minimum for χ2 by setting some of the terms equal to zero.

Our problem is to find the minimum of the equation:

χ2
m =

∑
i,j

(∑r
k=1[UikVjk]−Xij +Mi

σij

)2

(C.1)

=
∑
i,j

(∑r
k=1[(U

0
ik + dU r

ik)(V
0
jk + dV r

jk)]−Xij + (M0
i + dM r

i)

σij

)2

, (C.2)

where U r
ik, V

r
jk,M

r
i compose the search direction ~r and d is the step-size and sign. As the

search direction and current location are fixed, the only free variable in Equation C.2 is
d. Thus the correct step size can be found by finding all the minimum of the fourth-order
polynomial in d represented by Equation C.2. As we know limd→±∞ χ

2
m =∞ (Paragraph

1 of Appendix B), by the extreme value theorem we know the minimum of χ2
m(d) is at a

point where ∂χ2
m(d)
∂d

= 0.
Define αij, βij, γij as:

209

210 APPENDIX C. ANALYTICAL MINIMUM

αij =
∑
k

(U0
ikV

r
jk) (C.3)

βij =
∑
k

(U r
ikV

0
jk + V r

j,kU
0
ik +M r

i (C.4)

γij =
∑
k

(U0
ikV

0
jk +Mi −Xij, (C.5)

and substituting αij, βij, γij into Equation C.2, we have

χ2
m =

∑
i

∑
j

(αijd
2 + βijd+ γij)

2

σ2
ij

(C.6)

=
∑
i

∑
j

α2
ijd

4 + 2αijβijd
3 + (2αijγij + β2

ij)d
2 + (2βijγij)d+ γ2ij

σ2
ij

(C.7)

We now take the derivative g(d) ≡ ∂χ2
m(d)
∂d

with χ2
m in the form from Equation C.7,

solve for the zeros of g(d) using standard expressions, and pick the value of d from these
zeros minimizing χ2

m(d) at the real valued zeros of g(d). Thus we have found the minimum
of χ2

m(d) along the search direction ~r from the starting position U0V t0.
All that remains to be shown is that this approach works for χ2(d) as well. It’s clear

through substitution that Equation C.7 is equal to equation B.1 if in the definitions of β
and γ, the quantities M r

i and M0
i are set to zero. Thus the final expression we get for the

derivative can be used for computing the minimum of both χ2 and χ2
m along ~r as long

as we define β, γ differently for the two cases, and by the same logic as the χ2
m case we

have found the optimal step size d in one step.

�

Appendix D

Laplacian

We here outline the work from [Hui91] to derive an analytic expression for a good ap-
proximation of the Laplacian on an irregularly sampled plane.

Consider the problem of computing the Laplacian on an irregularly sampled plane
locally as depicted in Figure D.1. Compared to the regular polygon case, there is a break
in symmetry and there are irregular distances between the neighbors and central point.
We correct the distances by using a linear interpolation scheme to estimate the values
of points equidistant (distance r′, to be specified later) from the central point p0. In
particular, we know ~r′ = λ~ri+µ~ri+1, so we estimate f(r′) ≈ f0 +λ(fi−f0)+µ(fi+1−f0),
with λ, µ ≥ 0. (The additional inequality λ+µ ≤ 1 is required if ~r′ is in the triangle, but
we allow ~r′ to cross the edge (~ri+1−~ri). We can then express λ and µ in terms of ri, ri+1,
r′ and the angles α and φi. Specifically,

λ =
r′

ri

sin(φi − α)

sin(φi)
, µ =

r′

ri+1

sin(α)

sin(φi)
(D.1)

and thus,

f(r′, α)− f0 =
r′

ri

sin(φi − α)

sin(φi)
(fi − f0) +

r′

ri+1

sin(α)

sin(φi)
(fi+1 − f0). (D.2)

Define x = r′ cos(θ), y = r′ sin(θ), we can take the integral around p0 at radius r′ of
the truncated Taylor expansion,

211

212 APPENDIX D. LAPLACIAN

!ri

!ri+1

µ

λ

!r′

α

φi

p0

Figure D.1: General situation for an irregular triangular planar grid. Modeled after
[Hui91, Figure 2]

213

∫ 2π

0

(f(r′, θ)− f0)dθ ≈ r

∫ 2π

0

cos(θ)dθ
∂f

∂x

∣∣∣∣
p0

+ r

∫ 2π

0

sin(θ)dθ
∂f

∂y

∣∣∣∣
p0

(D.3)

+r2
∫ 2π

0

cos(θ) sin(θ)dθ
∂2f

∂x∂y

∣∣∣∣
p0

+
1

2
r2
∫ 2π

0

cos2(θ)dθ
∂2f

∂x2

∣∣∣∣
p0

+
1

2
r2
∫ 2π

0

sin2(θ)dθ
∂2f

∂y2

∣∣∣∣
p0

= 0 + 0 + 0 +
πr2

2

∂2f

∂x2

∣∣∣∣
p0

+
πr2

2

∂2f

∂y2

∣∣∣∣
p0

(D.4)

=
πr2

2
∆f. (D.5)

Returning to Eqn. D.2, we also know that,

=

∫ 2π

0

(f(r′, θ)− f0)dθ (D.6)

=

∫ 2π

0

(
r′

ri

sin(φi − θ)
sin(φi)

(fi − f0) +
r′

ri+1

sin(θ)

sin(φi)
(fi+1 − f0)

)
dθ (D.7)

=
N∑
i=1

[
r′

ri
· 1− cos(φi)

sin(φi)
(fi − f0) +

r′

ri+1

· 1− cos(φi)

sin(φi)
(fi+1 − f0)

]
(D.8)

=
N∑
i=1

r′

ri

(
1− cos(φ−i)

sin(φ−i)
+

1− cos(φ+
i)

sin(φ+
i)

)
(fi − f0), (D.9)

where the last equality holds by reordering terms and defining φ+
i as the angle from

~ri to ~ri+1, and φ−i as the angle from ~ri−1 to ~ri, where r0 ≡ rN and r1 ≡ rN+1.

Equating these two expressions for
∫ 2π

0
(f(r′, θ)−f0)dθ, we arrive at the approximation,

∆f0 ≈
4

r′
1

2π

N∑
i=1

(
1− cos(φ−i)

sin(φ−i)
+

1− cos(φ+
i)

sin(φ+
i)

)
fi − f0
ri

. (D.10)

A good choice for r′ seems to be such that in the case of equal angles, r′ = r̄ N
2π

1,

1See original text for details.

214 APPENDIX D. LAPLACIAN

where r̄ ≡ mean distance of neighboring points to p0
2. This implies that, defining

Φtot =
N∑
i=1

(
1− cos(φ−i)

sin(φ−i)
+

1− cos(φ+
i)

sin(φ+
i)

)
,

we have the approximation

∆f0 ≈
N∑
i=1

w
(2)
i (fi − f0), (D.11)

where

w
(2)
i =

4

r̄
· 1

Φtot

· 1

ri

(
1− cos(φ−i)

sin(φ−i)
+

1− cos(φ+
i)

sin(φ+
i)

)
. (D.12)

2Though this choice (6= 0) doesn’t change the result because of linear interpolation assumption for f
– for the non-linear interpolation case we need to pick the optimal distance and/or steps for interpolation
carefully (e.g. Iserles)

	Software License
	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Purpose
	Installing the Software

	Theory
	Overview
	Basic Assumptions
	Centering
	Decomposition
	Temporally Dense vs. Sparse Data
	Fault Models
	Inversion

	Practice
	MATLAB Review
	Naming Conventions

	Tutorial – Inversion of Nias 2005 Postseismic
	Geological Background
	A First Run
	Parameters to Vary

	Tutorial – Loading New cGPS2/cGPS3 Datasets
	Setup
	The Art of Inversion

	Checklist – Adding a new type of data
	Comprehensive Guide to Options
	load_scenario_information
	data_file
	scen_parameters_file
	center_parameters_file
	decomposition_parameters_file
	model_parameters_file
	inversion_parameters_file
	plotting_commands_file

	File Conventions
	Data Input
	Fault Models

	.m-Files
	Data/Conventions Loading
	Decompositions
	Fault Related
	General
	Inversions
	Plotting and Statistics
	Testing Scripts

	Variables
	Bibliography
	Downloading Coast Files
	Derivatives of 2
	Analytical Minimum
	Laplacian

